找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Discovery from Sensor Data; Second International Mohamed Medhat Gaber,Ranga Raju Vatsavai,Auroop R. Conference proceedings 2010 S

[復(fù)制鏈接]
查看: 32441|回復(fù): 45
樓主
發(fā)表于 2025-3-21 19:14:53 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Knowledge Discovery from Sensor Data
副標(biāo)題Second International
編輯Mohamed Medhat Gaber,Ranga Raju Vatsavai,Auroop R.
視頻videohttp://file.papertrans.cn/544/543866/543866.mp4
概述Fast-track conference proceedings.State-of-the-art research.Unique visibility
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Knowledge Discovery from Sensor Data; Second International Mohamed Medhat Gaber,Ranga Raju Vatsavai,Auroop R. Conference proceedings 2010 S
出版日期Conference proceedings 2010
關(guān)鍵詞data mining; disaster management; knowledge discovery; online; remote sensors; sensor mining; sensor netwo
版次1
doihttps://doi.org/10.1007/978-3-642-12519-5
isbn_softcover978-3-642-12518-8
isbn_ebook978-3-642-12519-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

書目名稱Knowledge Discovery from Sensor Data影響因子(影響力)




書目名稱Knowledge Discovery from Sensor Data影響因子(影響力)學(xué)科排名




書目名稱Knowledge Discovery from Sensor Data網(wǎng)絡(luò)公開度




書目名稱Knowledge Discovery from Sensor Data網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Knowledge Discovery from Sensor Data被引頻次




書目名稱Knowledge Discovery from Sensor Data被引頻次學(xué)科排名




書目名稱Knowledge Discovery from Sensor Data年度引用




書目名稱Knowledge Discovery from Sensor Data年度引用學(xué)科排名




書目名稱Knowledge Discovery from Sensor Data讀者反饋




書目名稱Knowledge Discovery from Sensor Data讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:39:40 | 只看該作者
Spatiotemporal Neighborhood Discovery for Sensor Data, discretize temporal intervals. These methods were tested on real life datasets including (a) sea surface temperature data from the Tropical Atmospheric Ocean Project (TAO) array in the Equatorial Pacific Ocean and (b)highway sensor network data archive. We have found encouraging results which are validated by real life phenomenon.
板凳
發(fā)表于 2025-3-22 00:34:36 | 只看該作者
Unsupervised Plan Detection with Factor Graphs,levant locations. Instead, we introduce 2 unsupervised methods to simultaneously estimate model parameters and hidden values within a Factor graph representing agent transitions over time. We evaluate our approach by applying it to goal prediction in a GPS dataset tracking 1074 ships over 5 days in the English channel.
地板
發(fā)表于 2025-3-22 04:53:27 | 只看該作者
Probabilistic Analysis of a Large-Scale Urban Traffic Sensor Data Set,n or simple thresholding techniques to identify these anomalies. We describe the application of probabilistic modeling and unsupervised learning techniques to this data set and illustrate how these approaches can successfully detect underlying systematic patterns even in the presence of substantial noise and missing data.
5#
發(fā)表于 2025-3-22 09:12:28 | 只看該作者
6#
發(fā)表于 2025-3-22 13:05:32 | 只看該作者
Data Mining for Diagnostic Debugging in Sensor Networks: Preliminary Evidence and Lessons Learned,osis in the face of non-reproducible behavior, high interactive complexity, and resource constraints. Several examples are given to finding bugs in real sensor network code using the tools developed, demonstrating the efficacy of the approach.
7#
發(fā)表于 2025-3-22 17:27:05 | 只看該作者
An Adaptive Sensor Mining Framework for Pervasive Computing Applications,nt in pervasive computing applications, such as the startup triggers and temporal information. In this paper, we present a description of our mining framework and validate the approach using data collected in the CASAS smart home testbed.
8#
發(fā)表于 2025-3-23 00:21:18 | 只看該作者
9#
發(fā)表于 2025-3-23 02:16:11 | 只看該作者
10#
發(fā)表于 2025-3-23 08:06:44 | 只看該作者
Pari Delir Haghighi,Brett Gillick,Shonali Krishnaswamy,Mohamed Medhat Gaber,Arkady Zaslavsky
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高安市| 荃湾区| 安庆市| 太湖县| 广平县| 开原市| 阿拉善左旗| 海南省| 九江市| 卓尼县| 邵阳县| 朝阳县| 博客| 枝江市| 临夏市| 全州县| 阿拉尔市| 新津县| 绍兴市| 巴青县| 阿拉尔市| 抚顺县| 柳江县| 呼玛县| 桃源县| 蓬安县| 镇原县| 望奎县| 抚顺县| 建平县| 阿合奇县| 嵊州市| 博野县| 嘉善县| 长子县| 寻乌县| 麻城市| 三台县| 延安市| 西畴县| 武隆县|