找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Acquisition in Practice; A Step-by-step Guide N. R. Milton Book 2007 Springer-Verlag London 2007 Knowledge Acquisition.Knowledge

[復(fù)制鏈接]
樓主: cucumber
11#
發(fā)表于 2025-3-23 13:28:14 | 只看該作者
12#
發(fā)表于 2025-3-23 15:50:14 | 只看該作者
defects in solids. In one paradigm, the fundamental objects are geometric structures on the body manifold, e.g., an affine connection and a Riemannian metric, which represent its internal microstructure. In the other paradigm, the fundamental object is the constitutive relation; if the constitutive
13#
發(fā)表于 2025-3-23 20:03:54 | 只看該作者
14#
發(fā)表于 2025-3-24 00:43:23 | 只看該作者
mains the same for all cross sections, the motion is restricted to a plane, the reference configuration is straight and the material of the continuous body is described by a linear elastic material law. These assumptions on the motion of the beam and material law enable us to formulate statements wh
15#
發(fā)表于 2025-3-24 03:35:42 | 只看該作者
mains the same for all cross sections, the motion is restricted to a plane, the reference configuration is straight and the material of the continuous body is described by a linear elastic material law. These assumptions on the motion of the beam and material law enable us to formulate statements wh
16#
發(fā)表于 2025-3-24 08:54:59 | 只看該作者
17#
發(fā)表于 2025-3-24 12:31:36 | 只看該作者
ms, how they can be obtained as homogenization limits of bodies with finitely many dislocations as the number of dislocations tends to infinity. Homogenization in the geometric paradigm amounts to a convergence of manifolds; in the constitutive paradigm it amounts to a .-convergence of energy functi
18#
發(fā)表于 2025-3-24 15:00:54 | 只看該作者
19#
發(fā)表于 2025-3-24 20:32:39 | 只看該作者
20#
發(fā)表于 2025-3-25 03:12:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通渭县| 新河县| 亚东县| 青阳县| 嘉善县| 梁河县| 贵阳市| 桑植县| 昌宁县| 德令哈市| 娄烦县| 雅江县| 乐山市| 铜陵市| 新营市| 攀枝花市| 司法| 上林县| 高邮市| 西林县| 台北县| 舟山市| 敦煌市| 大悟县| 宁陕县| 江都市| 仁寿县| 榕江县| 万全县| 怀远县| 天长市| 神农架林区| 和田县| 金平| 花莲市| 香河县| 乐清市| 封丘县| 甘南县| 北安市| 金山区|