找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knots, Low-Dimensional Topology and Applications; Knots in Hellas, Int Colin C. Adams,Cameron McA. Gordon,Radmila Sazdano Conference procee

[復制鏈接]
樓主: FERAL
21#
發(fā)表于 2025-3-25 05:38:19 | 只看該作者
,Knot Theory: From Fox 3-Colorings of Links to Yang–Baxter Homology and Khovanov Homology,logy to Khovanov homology we build homology of distributive structures (including homology of Fox colorings) and generalize it to homology of Yang–Baxter operators. We speculate, with supporting evidence, on co-cycle invariants of knots coming from Yang–Baxter homology. Here the work of Fenn–Rourke–
22#
發(fā)表于 2025-3-25 10:46:44 | 只看該作者
Identity Theorem for Pro-,-groups,ider the problems of pro-.-groups theory through the prism of Tannaka duality, concentrating on the category of representations. In particular we attach special importance to the existence of identities in free pro-.-groups (“conjurings”).
23#
發(fā)表于 2025-3-25 11:42:41 | 只看該作者
24#
發(fā)表于 2025-3-25 18:07:43 | 只看該作者
25#
發(fā)表于 2025-3-25 23:27:03 | 只看該作者
26#
發(fā)表于 2025-3-26 03:40:14 | 只看該作者
27#
發(fā)表于 2025-3-26 04:28:07 | 只看該作者
,From the Framisation of the Temperley–Lieb Algebra to the Jones Polynomial: An Algebraic Approach,ey–Lieb algebras. We use this result to obtain a closed combinatorial formula for the invariants for classical links obtained from a Markov trace on the Framisation of the Temperley–Lieb algebra. For a given link ., this formula involves the Jones polynomials of all sublinks of ., as well as linking numbers.
28#
發(fā)表于 2025-3-26 11:35:39 | 只看該作者
Knot Invariants in Lens Spaces,omial of links in lens spaces, which we represent by mixed link diagrams. These invariants generalize the corresponding knot polynomials in the classical case. We compare the invariants by means of the ability to distinguish between some difficult cases of knots with certain symmetries.
29#
發(fā)表于 2025-3-26 16:15:04 | 只看該作者
30#
發(fā)表于 2025-3-26 20:49:07 | 只看該作者
978-3-030-16033-3Springer Nature Switzerland AG 2019
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
黎平县| 樟树市| 宣武区| 芜湖市| 巴彦淖尔市| 桓台县| 怀化市| 乐至县| 苏州市| 台东县| 桃江县| 盖州市| 西贡区| 萝北县| 中江县| 沭阳县| 伊吾县| 嵩明县| 昌都县| 孝昌县| 巧家县| 辽阳县| 沈阳市| 河池市| 海盐县| 东宁县| 盘山县| 唐河县| 全南县| 浦城县| 凉城县| 新乐市| 松溪县| 吴桥县| 米泉市| 浦城县| 修武县| 岑溪市| 漳平市| 阳高县| 临汾市|