找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knot Theory and Its Applications; Kunio Murasugi Textbook 1996 Springer Science+Business Media New York 1996 Algebraic topology.Knot invar

[復(fù)制鏈接]
樓主: 恐怖
31#
發(fā)表于 2025-3-26 23:51:20 | 只看該作者
32#
發(fā)表于 2025-3-27 04:49:57 | 只看該作者
33#
發(fā)表于 2025-3-27 09:18:37 | 只看該作者
Torus Knots,ossible. The next most obvious step is to try to group together knots (or links) with a particular property or properties in common, and then try to classify them. In fact, the techniques we have already discussed are sufficient for us to extract the characteristics of certain particular types of knots.
34#
發(fā)表于 2025-3-27 13:14:37 | 只看該作者
35#
發(fā)表于 2025-3-27 15:46:02 | 只看該作者
36#
發(fā)表于 2025-3-27 18:15:19 | 只看該作者
Knot Tables,nots, these tables were subsequently found to be incomplete. However, considering that these lists were compiled around 100 years ago, they are accurate to a very high degree. In this chapter we shall explain two typical methods of compiling knot tables.
37#
發(fā)表于 2025-3-28 00:55:22 | 只看該作者
Graph Theory Applied to Chemistry, said to be an . of G. The relation/condition mentioned above stipulates that an element, e, of E. is . to elements, say, a and b, of V. (., the condition does not require a and b to be distinct.) The two vertices a and b are said to be endpoints of e. If it is the case that a = b, then e is said to be a loop.
38#
發(fā)表于 2025-3-28 04:47:41 | 只看該作者
39#
發(fā)表于 2025-3-28 10:00:14 | 只看該作者
Tangles and 2-Bridge Knots,not be realized. Nevertheless, the introduction of this new research approach has had a significant impact on knot theory. In this chapter we shall investigate 2-bridge knots (or links), which are a special kind of algebraic knot obtained from trivial tangles.
40#
發(fā)表于 2025-3-28 11:34:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 06:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康马县| 喀喇沁旗| 灵川县| 富宁县| 陆河县| 无为县| 鹤庆县| 元朗区| 阳东县| 酒泉市| 白城市| 元朗区| 沙河市| 沭阳县| 小金县| 昌图县| 十堰市| 伊金霍洛旗| 南开区| 景泰县| 龙海市| 五华县| 淮滨县| 平安县| 土默特右旗| 襄垣县| 宿州市| 蒲江县| 咸阳市| 玉树县| 外汇| 山西省| 诸暨市| 梁山县| 木兰县| 曲阜市| 长沙市| 大余县| 大田县| 南汇区| 深州市|