找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kleinian Groups; Bernard Maskit Book 1988 Springer-Verlag Berlin Heidelberg 1988 Area.Dimension.Finite.Group theory.Invariant.Riemann surf

[復制鏈接]
查看: 23292|回復: 44
樓主
發(fā)表于 2025-3-21 16:35:52 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Kleinian Groups
編輯Bernard Maskit
視頻videohttp://file.papertrans.cn/544/543371/543371.mp4
叢書名稱Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: Kleinian Groups;  Bernard Maskit Book 1988 Springer-Verlag Berlin Heidelberg 1988 Area.Dimension.Finite.Group theory.Invariant.Riemann surf
描述The modern theory of Kleinian groups starts with the work of Lars Ahlfors and Lipman Bers; specifically with Ahlfors‘ finiteness theorem, and Bers‘ observation that their joint work on the Beltrami equation has deep implications for the theory of Kleinian groups and their deformations. From the point of view of uniformizations of Riemann surfaces, Bers‘ observation has the consequence that the question of understanding the different uniformizations of a finite Riemann surface poses a purely topological problem; it is independent of the conformal structure on the surface. The last two chapters here give a topological description of the set of all (geometrically finite) uniformizations of finite Riemann surfaces. We carefully skirt Ahlfors‘ finiteness theorem. For groups which uniformize a finite Riemann surface; that is, groups with an invariant component, one can either start with the assumption that the group is finitely generated, and then use the finiteness theorem to conclude that the group represents only finitely many finite Riemann surfaces, or, as we do here, one can start with the assumption that, in the invariant component, the group represents a finite Riemann surface, a
出版日期Book 1988
關鍵詞Area; Dimension; Finite; Group theory; Invariant; Riemann surface; approximation; convergence; field; finite
版次1
doihttps://doi.org/10.1007/978-3-642-61590-0
isbn_softcover978-3-642-64878-6
isbn_ebook978-3-642-61590-0Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 1988
The information of publication is updating

書目名稱Kleinian Groups影響因子(影響力)




書目名稱Kleinian Groups影響因子(影響力)學科排名




書目名稱Kleinian Groups網絡公開度




書目名稱Kleinian Groups網絡公開度學科排名




書目名稱Kleinian Groups被引頻次




書目名稱Kleinian Groups被引頻次學科排名




書目名稱Kleinian Groups年度引用




書目名稱Kleinian Groups年度引用學科排名




書目名稱Kleinian Groups讀者反饋




書目名稱Kleinian Groups讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:13:13 | 只看該作者
Groups of Isometries,roups. We then build some of the theory of discrete groups of isometries in these geometries. The major results are the construction of the Dirichlet and Ford regions, and the proof of Poincare’s polyhedron theorem.
板凳
發(fā)表于 2025-3-22 03:32:46 | 只看該作者
地板
發(fā)表于 2025-3-22 08:16:45 | 只看該作者
Combination Theorems, abstract setting, are given in sections A and D. For Kleinian groups, the purely abstract setting is sufficient to prove that the combined group . is discrete and has the named group theoretic structure, but does not suffice to give a clear understanding of ./. or of ?./.; nor does it yield suffici
5#
發(fā)表于 2025-3-22 11:34:45 | 只看該作者
6#
發(fā)表于 2025-3-22 16:19:11 | 只看該作者
-Groups,es: Fuchsian and quasifuchsian groups (these are groups with exactly two components, both invariant), degenerate groups (these are groups with exactly one component), and groups that contain accidental parabolic transformations. We also demonstrate the existence of degenerate groups, and discuss the
7#
發(fā)表于 2025-3-22 18:03:34 | 只看該作者
8#
發(fā)表于 2025-3-23 01:09:40 | 只看該作者
9#
發(fā)表于 2025-3-23 04:34:05 | 只看該作者
10#
發(fā)表于 2025-3-23 08:59:28 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 14:24
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
正安县| 三明市| 静安区| 昭苏县| 罗田县| 新沂市| 乌海市| 石城县| 凤台县| 土默特右旗| 株洲市| 顺义区| 秭归县| 景德镇市| 东海县| 道真| 南川市| 通榆县| 宕昌县| 铁岭市| 小金县| 介休市| 饶平县| 平陆县| 衡阳县| 尖扎县| 文水县| 长葛市| 平武县| 沙河市| 汝南县| 琼海市| 迁西县| 咸宁市| 京山县| 泌阳县| 双牌县| 陆丰市| 隆回县| 镇平县| 安吉县|