找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kit Fine on Truthmakers, Relevance, and Non-classical Logic; Federico L. G. Faroldi,Frederik Van De Putte Book 2023 The Editor(s) (if appl

[復(fù)制鏈接]
樓主: Jackson
11#
發(fā)表于 2025-3-23 12:01:23 | 只看該作者
Conjunctive and Disjunctive Parts,en contents. There is ., corresponding to the relationship between disjunct and disjunction, and there is ., corresponding to the relationship between conjunctions and their conjuncts. Fine associates these with two notions of parthood: . and .. Conjunctive parthood is a very useful notion, allowing
12#
發(fā)表于 2025-3-23 17:25:37 | 只看該作者
Truth-Maker Semantics for Some Substructural Logics,n a relation of exact verification between states and formulas. A natural question arises as to what are the limits of Fine’s approach and whether an exact semantics of similar kind can be constructed for other important non-classical logics. In our paper, we will generalize Fine’s approach and deve
13#
發(fā)表于 2025-3-23 18:04:56 | 只看該作者
14#
發(fā)表于 2025-3-23 22:18:59 | 只看該作者
15#
發(fā)表于 2025-3-24 04:29:12 | 只看該作者
,Counterfactuals, Infinity and?Paradox, that a satisfactory resolution of these paradoxes will have wide ranging implications for the logic of counterfactuals. I then situate these puzzles in the context of the wider role of counterfactuals, connecting them to indicative conditionals, probabilities, rationality and the direction of causa
16#
發(fā)表于 2025-3-24 06:52:44 | 只看該作者
17#
發(fā)表于 2025-3-24 13:38:48 | 只看該作者
18#
發(fā)表于 2025-3-24 16:46:48 | 只看該作者
Truth-Maker Semantics for Some Substructural Logics,lop an exact semantics for some substructural logics. In particular, we will provide a truthmaker semantics for the Non-associative Lambek calculus and some of its extensions. This generalization will reveal some interesting connections between Fine’s recent work on truthmaker semantics and his early work on relevant logic.
19#
發(fā)表于 2025-3-24 22:22:02 | 只看該作者
20#
發(fā)表于 2025-3-24 23:59:14 | 只看該作者
,Truthmaker Semantics for?Epistemic Logic, a conditional knowledge operator, drawing on notions of implication and content that are prominent in Fine’s work. We demonstrate that different logics are thereby generated, bearing on the aforementioned epistemic principles. Finally, we offer preliminary observations about the prospects for each logic.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
日喀则市| 锡林郭勒盟| 河间市| 手游| 图木舒克市| 石屏县| 广西| 潢川县| 太康县| 出国| 博爱县| 辽阳县| 延川县| 阿拉善盟| 陇川县| 溧阳市| 汉川市| 西安市| 邹城市| 嘉峪关市| 余江县| 离岛区| 龙井市| 永春县| 鹤山市| 科技| 双城市| 灌南县| 南澳县| 彰化市| 饶河县| 乌兰浩特市| 合作市| 崇信县| 周至县| 遂宁市| 慈利县| 攀枝花市| 太保市| 广安市| 织金县|