找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kidney and Kidney Tumor Segmentation; MICCAI 2021 Challeng Nicholas Heller,Fabian Isensee,Christopher Weight Conference proceedings 2022 Sp

[復制鏈接]
樓主: Coenzyme
51#
發(fā)表于 2025-3-30 10:57:13 | 只看該作者
Squeeze-and-Excitation Encoder-Decoder Network for Kidney and Kidney Tumor Segmentation in CT Imageffective control methods. The precise and automatic segmentation of kidney tumors in computed tomography (CT) is an important prerequisite for medical methods such as pathological localization and radiotherapy planning, However, due to the large differences in the shape, size, and location of kidney
52#
發(fā)表于 2025-3-30 13:02:52 | 只看該作者
,A Two-Stage Cascaded Deep Neural Network with?Multi-decoding Paths for?Kidney Tumor Segmentation,or kidney cancer diagnosis. Automatic and accurate kidney and kidney tumor segmentation in CT scans is crucial for treatment and surgery planning. However, kidney tumors and cysts have various morphologies, with blurred edges and unpredictable positions. Therefore, precise segmentation of tumors and
53#
發(fā)表于 2025-3-30 20:26:09 | 只看該作者
54#
發(fā)表于 2025-3-31 00:32:27 | 只看該作者
,Automatic Segmentation in?Abdominal CT Imaging for?the?KiTS21 Challenge,t. Convolutional Neural Network is trained in patches of three-dimensional abdominal CT imaging. For the segmentation of the 3D image, a variant of U-Net which consists of 3D Encoder-Decoder CNN architecture with additional Skip Connection is used. Lastly, there is a loss function to resolve the cla
55#
發(fā)表于 2025-3-31 04:01:40 | 只看該作者
56#
發(fā)表于 2025-3-31 08:34:16 | 只看該作者
57#
發(fā)表于 2025-3-31 11:21:44 | 只看該作者
58#
發(fā)表于 2025-3-31 15:10:53 | 只看該作者
Leveraging Clinical Characteristics for Improved Deep Learning-Based Kidney Tumor Segmentation on Cnced computed tomography (CT). A total of 300 kidney cancer patients with contrast-enhanced CT scans and clinical characteristics were included. A baseline segmentation of the kidney cancer was performed using a 3D U-Net. Input to the U-Net were the contrast-enhanced CT images, output were segmentat
59#
發(fā)表于 2025-3-31 20:59:26 | 只看該作者
60#
發(fā)表于 2025-3-31 22:30:42 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 03:47
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
锡林浩特市| 阿拉尔市| 中牟县| 潢川县| 葫芦岛市| 丹巴县| 台中市| 文昌市| 重庆市| 贡觉县| 定兴县| 田阳县| 交口县| 慈利县| 基隆市| 清涧县| 临西县| 萍乡市| 宽城| 绥中县| 福泉市| 屏东县| 望奎县| 安陆市| 剑阁县| 曲靖市| 新疆| 西贡区| 宿州市| 县级市| 乐昌市| 德保县| 福州市| 繁昌县| 定陶县| 郑州市| 兴隆县| 门源| 钟山县| 南昌县| 泽普县|