找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Kidney and Kidney Tumor Segmentation; MICCAI 2021 Challeng Nicholas Heller,Fabian Isensee,Christopher Weight Conference proceedings 2022 Sp

[復(fù)制鏈接]
樓主: Coenzyme
11#
發(fā)表于 2025-3-23 10:03:35 | 只看該作者
,Automatic Segmentation in?Abdominal CT Imaging for?the?KiTS21 Challenge,Net which consists of 3D Encoder-Decoder CNN architecture with additional Skip Connection is used. Lastly, there is a loss function to resolve the class imbalance problem frequently occurring in the task of medical imaging. S?rensen-Dice Score and Surface Dice Score on the test set are 80.13 and 68.61.
12#
發(fā)表于 2025-3-23 14:26:04 | 只看該作者
13#
發(fā)表于 2025-3-23 21:25:53 | 只看該作者
Conference proceedings 2022er 27, 2021, due to the COVID-19 pandemic...The 21 contributions presented were carefully reviewed and selected from 29 submissions. This challenge aims to develop the best system for automatic semantic segmentation of renal tumors and surrounding anatomy. .
14#
發(fā)表于 2025-3-23 23:10:46 | 只看該作者
15#
發(fā)表于 2025-3-24 06:21:35 | 只看該作者
Modified nnU-Net for the MICCAI KiTS21 Challenge,e model by specific strategies. Detailed information is available in the part of Methods. The organizer uses an evaluation method called “Hierarchical Evaluation Classes” (HECs). The HEC scores of each model are showed in the following.
16#
發(fā)表于 2025-3-24 09:35:56 | 只看該作者
17#
發(fā)表于 2025-3-24 11:10:23 | 只看該作者
18#
發(fā)表于 2025-3-24 15:51:27 | 只看該作者
3D U-Net Based Semantic Segmentation of Kidneys and Renal Masses on Contrast-Enhanced CT,he majority-prediction segmentation masks. Our model achieved test-set performance of 97.0%, 85.1%, and 81.9% volumetric Dice score, and 93.7%, 72.0%, and 70.0% surface Dice score, on combined foreground, renal masses, and renal tumors, respectively, which tied for sixth place among challenge participants.
19#
發(fā)表于 2025-3-24 21:52:06 | 只看該作者
20#
發(fā)表于 2025-3-25 01:47:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 06:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
磐安县| 通山县| 蒙自县| 沙雅县| 马山县| 科技| 秀山| 恩平市| 芜湖市| 宜兰县| 岳阳市| 金塔县| 青冈县| 安塞县| 崇义县| 岐山县| 隆德县| 崇明县| 岑巩县| 合作市| 都匀市| 湖南省| 靖边县| 尚义县| 东港市| 孟津县| 三门峡市| 阿坝县| 丹寨县| 南江县| 富宁县| 林芝县| 舟曲县| 滕州市| 西宁市| 三亚市| 栾川县| 蛟河市| 晋城| 应用必备| 巴里|