找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Keine Angst vor Mathe; Hochschulmathematik Werner Poguntke Textbook 20062nd edition Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden

[復(fù)制鏈接]
樓主: NO610
21#
發(fā)表于 2025-3-25 04:57:40 | 只看該作者
iology and other functional domains. We discern three routes for arriving at a unified account: literally applying the ICE-theory to the other functional domains, taking non-technical functions as ‘a(chǎn)s-if’ ICE-technical-functions, and generalising the ICE-theory to the other domains. We argue that th
22#
發(fā)表于 2025-3-25 11:10:42 | 只看該作者
23#
發(fā)表于 2025-3-25 15:23:21 | 只看該作者
24#
發(fā)表于 2025-3-25 17:27:31 | 只看該作者
25#
發(fā)表于 2025-3-25 22:56:17 | 只看該作者
.Proposes object-oriented schemes for software implementatio.This book presents a new semiotic theory based upon category theory and applying to a classification of creativity in music and mathematics. It is the first functorial approach to mathematical semiotics that can be applied to AI implementa
26#
發(fā)表于 2025-3-26 02:29:30 | 只看該作者
27#
發(fā)表于 2025-3-26 05:41:03 | 只看該作者
.Proposes object-oriented schemes for software implementatio.This book presents a new semiotic theory based upon category theory and applying to a classification of creativity in music and mathematics. It is the first functorial approach to mathematical semiotics that can be applied to AI implementa
28#
發(fā)表于 2025-3-26 10:51:33 | 只看該作者
e first functorial approach to mathematical semiotics that can be applied to AI implementations for creativity by using topos theory and its applications to music theory..Of particular interest is the generalized Yoneda embedding in the bidual of the category of categories (Lawvere) - parametrizing
29#
發(fā)表于 2025-3-26 13:20:57 | 只看該作者
e first functorial approach to mathematical semiotics that can be applied to AI implementations for creativity by using topos theory and its applications to music theory..Of particular interest is the generalized Yoneda embedding in the bidual of the category of categories (Lawvere) - parametrizing
30#
發(fā)表于 2025-3-26 19:25:20 | 只看該作者
Einleitung,tigsten halte. Gegenüber der ersten Auflage ist ein Kapitel über Integrale hinzu gekommen, welches mit ?Messen“ überschrieben ist. Neben den Kapiteln 2 bis 9, mit denen man in vielen anderen Fachgebieten sowie in zahlreichen Bereichen des t?glichen Lebens direkt etwas ?anfangen“ kann (weil man dort
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 21:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长子县| 凤城市| 永城市| 东城区| 高青县| 阿拉善左旗| 海盐县| 瓦房店市| 鹿邑县| 阿城市| 砀山县| 无为县| 汕尾市| 元氏县| 商洛市| 东乌珠穆沁旗| 尚志市| 宜黄县| 三河市| 宜良县| 颍上县| 五指山市| 巴林右旗| 普格县| 柏乡县| 揭阳市| 承德县| 恩平市| 邢台县| 神木县| 天等县| 房产| 慈溪市| 大悟县| 竹北市| 临夏县| 梅河口市| 民乐县| 南汇区| 扶沟县| 惠东县|