找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kausalit?t, Analytizit?t und Dispersionsrelationen; Eine Analyse aus mat Daniel Schallus Book 2016 Der/die Herausgeber bzw. der/die Autor(e

[復(fù)制鏈接]
樓主: 悲傷我
11#
發(fā)表于 2025-3-23 10:29:45 | 只看該作者
Einleitung,te der Begriff der Kausalit?t unter anderem die folgenden zwei Aspekte, denen auch heute wohl kaum jemand widersprechen würde: Erstens treten Ursache und Wirkung immer nur paarweise auf, wobei dieselbe Ursache auch zu derselben Wirkung führt. Zweitens eilt die Ursache der Wirkung voraus und niemals
12#
發(fā)表于 2025-3-23 15:18:50 | 只看該作者
Mathematische Vorbemerkungen,ge des Titch-marsh’schen Theorems sind vor allem holomorphe Funktionen von Interesse. Der Begriff der Holomorphie bezeichnet in der Funktionentheorie das Analogon zur Differenzierbarkeit in der reellen Analysis. Allerdings weisen holomorphe Funktionen Eigenschaften auf, die man in der reellen Analys
13#
發(fā)表于 2025-3-23 20:25:43 | 只看該作者
,Die Dielektrizit?tsfunktion,aren Zusammenhangs zwischen elektrischer Feldst?rke ~E und elektrischer Flussdichte ~D [FLS67, Jac02]. Die Permittivit?t kann somit verstanden werden als ein Ma? für die Durchl?ssigkeit elektrischer Strahlung bezogen auf ein bestimmtes Material. In Formeln l?sst sich der genannte Zusammenhang folgen
14#
發(fā)表于 2025-3-23 22:26:05 | 只看該作者
Klassische Streuung elektromagnetischer Wellen,llgemeinen atomare Teilchen, die Streuzentren. Die Richtungs?nderung ist dabei auf eine Wechselwirkung der einfallenden Teilchen bzw. Quanten mit eben diesen Streuzentren zurückzuführen. Diesen Vorgang bezeichnet man als Streuprozess [Mue73]. In der klassischen Elektrodynamik kann man sich diesen Vo
15#
發(fā)表于 2025-3-24 05:21:33 | 只看該作者
Streuung in der Quantenphysik,sgleichungen finden sich in vielen Bereichen der Physik. Sie beschreiben dabei immer lokale Erhaltungss?tze. Beispielsweise beschreibt die Kontinuit?tsgleichung der Elektrodynamik die Tatsache, dass die Ladung innerhalb eines Volumenelementes genau in dem Ma?e zu oder abnimmt, in dem Ladungen in das
16#
發(fā)表于 2025-3-24 10:20:27 | 只看該作者
17#
發(fā)表于 2025-3-24 12:55:59 | 只看該作者
18#
發(fā)表于 2025-3-24 15:05:01 | 只看該作者
19#
發(fā)表于 2025-3-24 20:20:19 | 只看該作者
20#
發(fā)表于 2025-3-25 02:09:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 18:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永胜县| 怀仁县| 宁津县| 丽水市| 乌兰察布市| 禄丰县| 和政县| 敦化市| 淮阳县| 泰顺县| 延庆县| 高雄市| 宽甸| 连平县| 永顺县| 潮州市| 隆化县| 大方县| 独山县| 大足县| 富阳市| 昌宁县| 安义县| 恭城| 甘洛县| 信阳市| 扎兰屯市| 柳林县| 务川| 寻乌县| 凤山县| 宝坻区| 大姚县| 衢州市| 金沙县| 神木县| 平乡县| 莒南县| 龙里县| 昌宁县| 江油市|