找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Kac-Moody Groups, their Flag Varieties and Representation Theory; Shrawan Kumar Textbook 2002 Springer Science+Business Media New York 200

[復(fù)制鏈接]
樓主: 法官所用
21#
發(fā)表于 2025-3-25 06:28:44 | 只看該作者
22#
發(fā)表于 2025-3-25 08:21:23 | 只看該作者
https://doi.org/10.1007/978-1-4612-0105-2algebraic geometry; algebraic topology; cohomology; group theory; homological algebra; homology; linear op
23#
發(fā)表于 2025-3-25 11:49:27 | 只看該作者
24#
發(fā)表于 2025-3-25 19:34:20 | 只看該作者
25#
發(fā)表于 2025-3-25 20:50:19 | 只看該作者
Generalized Flag Varieties of Kac-Moody Groups,hat the Schubert subvarieties . are indeed closed finite-dimensional (projective) irreducible subvarieties. Fix a (dominant integral) weight . such that, for . iff i∈Y. Such a λ is called Y-regular. Let V (λ) be an integrable highest weight g-module with highest weight λ. From the last chapter, . (λ) acquires a .-module structure.
26#
發(fā)表于 2025-3-26 03:15:12 | 只看該作者
978-1-4612-6614-3Springer Science+Business Media New York 2002
27#
發(fā)表于 2025-3-26 04:20:10 | 只看該作者
28#
發(fā)表于 2025-3-26 08:44:25 | 只看該作者
An Introduction to ind-Varieties and pro-Groups,Sections 4.1-4.3 are devoted to developing the basic definitions, examples and elementary properties of ind-varieties and ind-groups introduced by [?afarevi ?82], which is our basic reference.
29#
發(fā)表于 2025-3-26 12:46:49 | 只看該作者
BGG and Kempf Resolutions,The aim of this chapter is to obtain the BGG resolution and the dual Kempf resolution in an arbitrary Kac—Moody situation.
30#
發(fā)表于 2025-3-26 19:14:49 | 只看該作者
Defining Equations of , and Conjugacy Theorems,Fix a subset Y?{1,...,e} and a Y-regular weight Λ ∈ ., i.e., A is dominant totally integral and Λ(α.) iff ∈ Y.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 00:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
客服| 青铜峡市| 南宫市| 石屏县| 额尔古纳市| 克拉玛依市| 铜梁县| 济阳县| 台州市| 文山县| 靖宇县| 天峻县| 高州市| 土默特右旗| 齐齐哈尔市| 离岛区| 济南市| 仁布县| 晋江市| 镇宁| 鄂托克旗| 叶城县| 讷河市| 红原县| 太保市| 监利县| 揭阳市| 东乡| 宣城市| 洛宁县| 筠连县| 呼和浩特市| 安丘市| 烟台市| 方城县| 乐昌市| 仙桃市| 盐源县| 莲花县| 南康市| 永城市|