找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: KP Solitons and the Grassmannians; Combinatorics and Ge Yuji Kodama Book 2017 The Author(s) 2017 KP equation.soliton solutions in two-dimen

[復(fù)制鏈接]
樓主: FARCE
11#
發(fā)表于 2025-3-23 11:40:55 | 只看該作者
12#
發(fā)表于 2025-3-23 15:45:29 | 只看該作者
Yuji KodamaIs the first book to present a classification theory of two-dimensional patterns generated by the KP solitons.Provides an introduction to totally non-negative Grassmannians and introduces combinatoria
13#
發(fā)表于 2025-3-23 21:27:54 | 只看該作者
14#
發(fā)表于 2025-3-24 01:44:49 | 只看該作者
15#
發(fā)表于 2025-3-24 05:10:41 | 只看該作者
16#
發(fā)表于 2025-3-24 09:05:51 | 只看該作者
Two-Dimensional Solitons,d by the Wronskian form. In this chapter, we show that this determinant structure is common for other two-dimensional integrable systems generated by several reductions of the . proposed by Ueno-Takasaki [128] (see [123] for a further generalization of the bilinear identity). In addition to the KP h
17#
發(fā)表于 2025-3-24 11:55:32 | 只看該作者
Introduction to the Real Grassmannian,cation of the KP solitons. A point of . can be represented by an . matrix of full rank. We introduce the Schubert decomposition of . and label each Schubert cell using a Young diagram and a permutation in the symmetric group .. We also introduce a combinatorial tool called the . over the Young diagr
18#
發(fā)表于 2025-3-24 16:30:20 | 只看該作者
The Deodhar Decomposition for the Grassmannian and the Positivity,ition of . [33, 34]. Then we give a refinement of the Schubert decomposition of . as a projection of the Deodhar decomposition, and parametrize each component of the refinement by introducing ., which is a Young diagram decorated with . and . stones. In particular, if the Go-diagram has only white s
19#
發(fā)表于 2025-3-24 20:33:52 | 只看該作者
20#
發(fā)表于 2025-3-25 03:02:35 | 只看該作者
KP Solitons on ,,mannian . and . in terms of the KP solitons. Using this duality, we construct the KP solitons for . from those for .. We then consider a special class of KP solitons for ., which consists of the same set of the asymptotic solitons at both . and ., i.e. .. The soliton solutions of this type are refer
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 05:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岳阳市| 崇明县| 来凤县| 呼伦贝尔市| 宜良县| 海淀区| 东兰县| 庐江县| 泰州市| 永吉县| 保德县| 大安市| 九寨沟县| 临桂县| 古交市| 增城市| 明水县| 蒙山县| 黄骅市| 高要市| 新和县| 凤冈县| 容城县| 太和县| 徐闻县| 双柏县| 富川| 平顺县| 金坛市| 玉环县| 永州市| 平塘县| 乐都县| 平陆县| 扬州市| 高密市| 金乡县| 平果县| 重庆市| 筠连县| 高陵县|