找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: K?rperoptimierung; Selbstverbesserung z Julia Schreiber Book 2021 Der/die Herausgeber bzw. der/die Autor(en), exklusiv lizenziert durch Spr

[復(fù)制鏈接]
樓主: vitamin-D
21#
發(fā)表于 2025-3-25 03:31:20 | 只看該作者
Julia Schreiberly R. A. Earnshaw H. Jones 1 March 1990 Introduction Fractals and Chaos The word ‘fractal‘ was coined by Benoit Mandelbrot in the late 1970s, but objects now defined as fractal in form have been known to artists and mathematicians for centuries. Mandelbrot‘s definition-"a set whose Hausdorff dimensi
22#
發(fā)表于 2025-3-25 10:19:06 | 只看該作者
Julia Schreiberloses a finite area. The distance along the curve between any two points is immeasurable—there is not enough wire in the world to bend into the shape of the Koch curve. These examples have exactly similar subsections, but many fractal objects, particularly those which occur naturally, have statistic
23#
發(fā)表于 2025-3-25 12:57:21 | 只看該作者
24#
發(fā)表于 2025-3-25 16:47:27 | 只看該作者
Julia Schreibereractions between scales are investigated. Approximate expressions are modified from engineering damage mechanics for this purpose and their validity is demonstrated by detailed numerical modeling of critical examples..The damage that results as deformation proceeds extends over a range of scales an
25#
發(fā)表于 2025-3-25 22:08:36 | 只看該作者
Julia Schreiberd of fractal structures that can be produced in the laboratory under controlled circumstances and try to give answers to questions like: how do you make a fractal? How do you determine its structure, in particular the fractal dimension, ..? What are the mechanical, electrical, and magnetic propertie
26#
發(fā)表于 2025-3-26 03:11:32 | 只看該作者
27#
發(fā)表于 2025-3-26 07:44:29 | 只看該作者
l irregularity is described by a specific quadratic Koch prefractal shape of order . which is periodically translated along the symmetry axis. This generates an axi-symmetric prefractal surface which models an irregular media. The statistical properties of particles trajectories are studied in the l
28#
發(fā)表于 2025-3-26 09:01:18 | 只看該作者
Julia Schreiberl irregularity is described by a specific quadratic Koch prefractal shape of order . which is periodically translated along the symmetry axis. This generates an axi-symmetric prefractal surface which models an irregular media. The statistical properties of particles trajectories are studied in the l
29#
發(fā)表于 2025-3-26 14:06:53 | 只看該作者
30#
發(fā)表于 2025-3-26 17:17:49 | 只看該作者
Julia Schreiber conference was to bring together some of the leading practitioners and exponents in the overlapping fields of fractal geometry and chaos theory, with a view to exploring some of the relationships between the two domains. Based on this initial conference and subsequent exchanges between the editors
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
斗六市| 万宁市| 嘉峪关市| 宜黄县| 内乡县| 岗巴县| 温泉县| 博白县| 兰州市| 南昌市| 大厂| 西华县| 临西县| 呼伦贝尔市| 洞头县| 永年县| 普格县| 阿鲁科尔沁旗| 兴宁市| 锡林郭勒盟| 武定县| 正蓝旗| 潼关县| 喀喇沁旗| 奎屯市| 军事| 文成县| 沂南县| 佛教| 久治县| 杨浦区| 衡南县| 韶关市| 麟游县| 榆社县| 宁安市| 崇阳县| 嵩明县| 屯门区| 凌海市| 南昌市|