找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: K?rperoptimierung; Selbstverbesserung z Julia Schreiber Book 2021 Der/die Herausgeber bzw. der/die Autor(en), exklusiv lizenziert durch Spr

[復(fù)制鏈接]
樓主: vitamin-D
21#
發(fā)表于 2025-3-25 03:31:20 | 只看該作者
Julia Schreiberly R. A. Earnshaw H. Jones 1 March 1990 Introduction Fractals and Chaos The word ‘fractal‘ was coined by Benoit Mandelbrot in the late 1970s, but objects now defined as fractal in form have been known to artists and mathematicians for centuries. Mandelbrot‘s definition-"a set whose Hausdorff dimensi
22#
發(fā)表于 2025-3-25 10:19:06 | 只看該作者
Julia Schreiberloses a finite area. The distance along the curve between any two points is immeasurable—there is not enough wire in the world to bend into the shape of the Koch curve. These examples have exactly similar subsections, but many fractal objects, particularly those which occur naturally, have statistic
23#
發(fā)表于 2025-3-25 12:57:21 | 只看該作者
24#
發(fā)表于 2025-3-25 16:47:27 | 只看該作者
Julia Schreibereractions between scales are investigated. Approximate expressions are modified from engineering damage mechanics for this purpose and their validity is demonstrated by detailed numerical modeling of critical examples..The damage that results as deformation proceeds extends over a range of scales an
25#
發(fā)表于 2025-3-25 22:08:36 | 只看該作者
Julia Schreiberd of fractal structures that can be produced in the laboratory under controlled circumstances and try to give answers to questions like: how do you make a fractal? How do you determine its structure, in particular the fractal dimension, ..? What are the mechanical, electrical, and magnetic propertie
26#
發(fā)表于 2025-3-26 03:11:32 | 只看該作者
27#
發(fā)表于 2025-3-26 07:44:29 | 只看該作者
l irregularity is described by a specific quadratic Koch prefractal shape of order . which is periodically translated along the symmetry axis. This generates an axi-symmetric prefractal surface which models an irregular media. The statistical properties of particles trajectories are studied in the l
28#
發(fā)表于 2025-3-26 09:01:18 | 只看該作者
Julia Schreiberl irregularity is described by a specific quadratic Koch prefractal shape of order . which is periodically translated along the symmetry axis. This generates an axi-symmetric prefractal surface which models an irregular media. The statistical properties of particles trajectories are studied in the l
29#
發(fā)表于 2025-3-26 14:06:53 | 只看該作者
30#
發(fā)表于 2025-3-26 17:17:49 | 只看該作者
Julia Schreiber conference was to bring together some of the leading practitioners and exponents in the overlapping fields of fractal geometry and chaos theory, with a view to exploring some of the relationships between the two domains. Based on this initial conference and subsequent exchanges between the editors
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巨鹿县| 东乡县| 石家庄市| 余江县| 开平市| 景泰县| 巢湖市| 安达市| 旺苍县| 永城市| 漳州市| 临泽县| 繁昌县| 五大连池市| 江口县| 大田县| 普格县| 吉木萨尔县| 仁寿县| 大安市| 田林县| 福海县| 盐山县| 将乐县| 子长县| 深泽县| 武川县| 奉新县| 黄石市| 黄大仙区| 桂阳县| 丰宁| 石台县| 鱼台县| 高要市| 城固县| 高碑店市| 辽阳县| 乌拉特后旗| 搜索| 麦盖提县|