找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: K?hler Immersions of K?hler Manifolds into Complex Space Forms; Andrea Loi,Michela Zedda Book 2018 Springer Nature Switzerland AG 2018 Com

[復制鏈接]
樓主: CLOG
31#
發(fā)表于 2025-3-26 22:53:04 | 只看該作者
Hartogs Type Domains,mmetric but just a bounded homogeneous domain.Finally, in Sect. 5.3 we discuss the existence of a K?hler immersion for a large class of Hartogs domains whose K?hler potentials are given locally by . for suitable function . (see Proposition 5.2).
32#
發(fā)表于 2025-3-27 05:10:27 | 只看該作者
33#
發(fā)表于 2025-3-27 06:11:02 | 只看該作者
,Calabi’s Criterion,mplex space formsrespectively. In Sect. 2.3 we discuss the existence of a K?hler immersion of a complex space forminto another, which Calabi himself in (Ann Math 58:1–23, 1953) completely classified as direct application of his criterion.
34#
發(fā)表于 2025-3-27 11:00:15 | 只看該作者
Book 2018ccount of what is known today on the subject and to point out some open problems.? ..Calabi‘s pioneering work, making use of the powerful tool of the diastasis function, allowed him to obtain necessary and sufficient conditions for a neighbourhood of a point to be locally K?hler immersed into a fini
35#
發(fā)表于 2025-3-27 14:06:59 | 只看該作者
1862-9113 ledge of complex and K?hler geometry.Exercises at the end of.The aim of this book is to describe Calabi‘s original work on K?hler immersions of K?hler manifolds into complex space forms, to provide a detailed account of what is known today on the subject and to point out some open problems.? ..Calab
36#
發(fā)表于 2025-3-27 20:37:08 | 只看該作者
Andrea Loi,Michela ZeddaWinner of the 2017 Book Prize of the Unione Matematica Italiana.Covers topics not surveyed before in the literature.Requires only basic knowledge of complex and K?hler geometry.Exercises at the end of
37#
發(fā)表于 2025-3-28 00:56:04 | 只看該作者
Lecture Notes of the Unione Matematica Italianahttp://image.papertrans.cn/k/image/541469.jpg
38#
發(fā)表于 2025-3-28 05:37:47 | 只看該作者
39#
發(fā)表于 2025-3-28 08:17:00 | 只看該作者
978-3-319-99482-6Springer Nature Switzerland AG 2018
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
含山县| 边坝县| 广州市| 泸定县| 德钦县| 额尔古纳市| 景东| 宁晋县| 岐山县| 罗江县| 永丰县| 社会| 高台县| 揭阳市| 台北县| 田林县| 迁西县| 汝阳县| 云梦县| 西丰县| 弋阳县| 靖安县| 云林县| 绵阳市| 三都| 大姚县| 金坛市| 志丹县| 卢湾区| 陆丰市| 买车| 工布江达县| 扎赉特旗| 锦屏县| 永和县| 亳州市| 嘉禾县| 宜良县| 夏邑县| 罗江县| 洮南市|