找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234
返回列表
打印 上一主題 下一主題

Titlebook: K?hler Immersions of K?hler Manifolds into Complex Space Forms; Andrea Loi,Michela Zedda Book 2018 Springer Nature Switzerland AG 2018 Com

[復(fù)制鏈接]
樓主: CLOG
31#
發(fā)表于 2025-3-26 22:53:04 | 只看該作者
Hartogs Type Domains,mmetric but just a bounded homogeneous domain.Finally, in Sect. 5.3 we discuss the existence of a K?hler immersion for a large class of Hartogs domains whose K?hler potentials are given locally by . for suitable function . (see Proposition 5.2).
32#
發(fā)表于 2025-3-27 05:10:27 | 只看該作者
33#
發(fā)表于 2025-3-27 06:11:02 | 只看該作者
,Calabi’s Criterion,mplex space formsrespectively. In Sect. 2.3 we discuss the existence of a K?hler immersion of a complex space forminto another, which Calabi himself in (Ann Math 58:1–23, 1953) completely classified as direct application of his criterion.
34#
發(fā)表于 2025-3-27 11:00:15 | 只看該作者
Book 2018ccount of what is known today on the subject and to point out some open problems.? ..Calabi‘s pioneering work, making use of the powerful tool of the diastasis function, allowed him to obtain necessary and sufficient conditions for a neighbourhood of a point to be locally K?hler immersed into a fini
35#
發(fā)表于 2025-3-27 14:06:59 | 只看該作者
1862-9113 ledge of complex and K?hler geometry.Exercises at the end of.The aim of this book is to describe Calabi‘s original work on K?hler immersions of K?hler manifolds into complex space forms, to provide a detailed account of what is known today on the subject and to point out some open problems.? ..Calab
36#
發(fā)表于 2025-3-27 20:37:08 | 只看該作者
Andrea Loi,Michela ZeddaWinner of the 2017 Book Prize of the Unione Matematica Italiana.Covers topics not surveyed before in the literature.Requires only basic knowledge of complex and K?hler geometry.Exercises at the end of
37#
發(fā)表于 2025-3-28 00:56:04 | 只看該作者
Lecture Notes of the Unione Matematica Italianahttp://image.papertrans.cn/k/image/541469.jpg
38#
發(fā)表于 2025-3-28 05:37:47 | 只看該作者
39#
發(fā)表于 2025-3-28 08:17:00 | 只看該作者
978-3-319-99482-6Springer Nature Switzerland AG 2018
1234
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巫溪县| 荥经县| 德钦县| 吉木萨尔县| 茂名市| 桃源县| 辽宁省| 三门县| 大同市| 济源市| 铁岭县| 许昌县| 桓仁| 松滋市| 西吉县| 佳木斯市| 高陵县| 锡林浩特市| 囊谦县| 江西省| 德保县| 皋兰县| 密云县| 惠安县| 柞水县| 蒙自县| 高尔夫| 太仆寺旗| 内黄县| 宜宾市| 普格县| 子洲县| 宁明县| 分宜县| 和平县| 福贡县| 江口县| 东乡| 沙田区| 韩城市| 宜宾市|