找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Krylov Methods for Nonsymmetric Linear Systems; From Theory to Compu Gérard Meurant,Jurjen Duintjer Tebbens Book 2020 Springer Nature Switz

[復制鏈接]
樓主: 漏出
21#
發(fā)表于 2025-3-25 06:00:34 | 只看該作者
22#
發(fā)表于 2025-3-25 09:24:49 | 只看該作者
23#
發(fā)表于 2025-3-25 13:51:16 | 只看該作者
Numerical comparisons of methods,In this chapter we compare numerically some of the methods we have studied in the previous chapters. We chose the methods which seem the most interesting ones and the most widely used.
24#
發(fā)表于 2025-3-25 16:25:20 | 只看該作者
25#
發(fā)表于 2025-3-25 23:49:24 | 只看該作者
Methods equivalent to FOM or GMRES,l norms. However, as we will see, this is not always the case in finite precision arithmetic. The algorithms mathematically equivalent to GMRES either construct residual vectors . orthogonal to . or explicitly minimize the residual norms.
26#
發(fā)表于 2025-3-26 01:27:33 | 只看該作者
Transpose-free Lanczos methods,ix-vector product with . (or .). In this chapter we study iterative methods, derived from those of Chapter 8, that do not need a multiplication with the transpose of .. They are sometimes called product-type or transpose-free methods. We consider, particularly, CGS and BiCGStab and their variants.
27#
發(fā)表于 2025-3-26 06:00:23 | 只看該作者
Restart, deflation and truncation,rrences to compute the basis vectors. These techniques are restarting and truncation. For restarting, we describe methods like GMRES-DR which is using approximate eigenvectors for computing the restarting vectors.
28#
發(fā)表于 2025-3-26 09:01:37 | 只看該作者
Q-OR and Q-MR methods,imension grows with the iteration number. Most popular Krylov methods can be classified as either a quasi-orthogonal residual (Q-OR) method or a quasi-minimal residual (Q-MR) method, with most Q-OR methods having Q-MR analogs; see [296].
29#
發(fā)表于 2025-3-26 15:59:52 | 只看該作者
30#
發(fā)表于 2025-3-26 19:45:54 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 09:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
卓资县| 伊宁市| 葵青区| 贡山| 平谷区| 银川市| 尼勒克县| 丰原市| 永昌县| 鄂州市| 基隆市| 灌南县| 星子县| 河西区| 阳西县| 临猗县| 治县。| 五家渠市| 张掖市| 新民市| 双柏县| 宁波市| 保山市| 景德镇市| 宿松县| 固原市| 镶黄旗| 襄垣县| 崇仁县| 昭觉县| 江川县| 府谷县| 达拉特旗| 牟定县| 肥乡县| 洪泽县| 海安县| 车险| 安平县| 宿州市| 吴江市|