找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kripke’s Worlds; An Introduction to M Olivier Gasquet,Andreas Herzig,Fran?ois Schwarzent Book 2014 Springer Basel AG 2014 epistemic logics.

[復(fù)制鏈接]
查看: 27445|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:11:23 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Kripke’s Worlds
副標(biāo)題An Introduction to M
編輯Olivier Gasquet,Andreas Herzig,Fran?ois Schwarzent
視頻videohttp://file.papertrans.cn/541/540577/540577.mp4
概述Aims at filling the gap between existing introductory and advanced textbooks.Introduces to the most important modal logics with multiple modalities from the perspective of the associated reasoning tas
叢書名稱Studies in Universal Logic
圖書封面Titlebook: Kripke’s Worlds; An Introduction to M Olivier Gasquet,Andreas Herzig,Fran?ois Schwarzent Book 2014 Springer Basel AG 2014 epistemic logics.
描述.Possible worlds models were introduced by Saul Kripke in the early 1960s. Basically, a possible world‘s model is nothing but a graph with labelled nodes and labelled edges. Such graphs provide semantics for various modal logics (alethic, temporal, epistemic and doxastic, dynamic, deontic, description logics) and also turned out useful for other nonclassical logics (intuitionistic, conditional, several paraconsistent and relevant logics). All these logics have been studied intensively in philosophical and mathematical logic and in computer science, and have been applied increasingly in domains such as program semantics, artificial intelligence, and more recently in the semantic web. Additionally, all these logics were also studied proof theoretically. The proof systems for modal logics come in various styles: Hilbert style, natural deduction, sequents, and resolution. However, it is fair to say that the most uniform and most successful such systems are tableaux systems. Given?logic and a formula, they allow one to check whether there is a model in that logic. This basically amounts to trying to build a model for the formula by building a tree. .This book follows a more general appr
出版日期Book 2014
關(guān)鍵詞epistemic logics; modal logics; tableau method; temporal logics
版次1
doihttps://doi.org/10.1007/978-3-7643-8504-0
isbn_softcover978-3-7643-8503-3
isbn_ebook978-3-7643-8504-0Series ISSN 2297-0282 Series E-ISSN 2297-0290
issn_series 2297-0282
copyrightSpringer Basel AG 2014
The information of publication is updating

書目名稱Kripke’s Worlds影響因子(影響力)




書目名稱Kripke’s Worlds影響因子(影響力)學(xué)科排名




書目名稱Kripke’s Worlds網(wǎng)絡(luò)公開度




書目名稱Kripke’s Worlds網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Kripke’s Worlds被引頻次




書目名稱Kripke’s Worlds被引頻次學(xué)科排名




書目名稱Kripke’s Worlds年度引用




書目名稱Kripke’s Worlds年度引用學(xué)科排名




書目名稱Kripke’s Worlds讀者反饋




書目名稱Kripke’s Worlds讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:09:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:33:57 | 只看該作者
https://doi.org/10.1007/978-3-7643-8504-0epistemic logics; modal logics; tableau method; temporal logics
地板
發(fā)表于 2025-3-22 05:22:47 | 只看該作者
5#
發(fā)表于 2025-3-22 10:05:58 | 只看該作者
Model Checking,This chapter shows how to implement model checking in .. There are two reasons why this topic is placed here: first, the implementation of model checking in . requires us to extend the tagging primitives of Chap.?.; second, model checking is going to be used in the next chapter.
6#
發(fā)表于 2025-3-22 12:56:08 | 只看該作者
7#
發(fā)表于 2025-3-22 20:49:45 | 只看該作者
8#
發(fā)表于 2025-3-22 22:08:22 | 只看該作者
Kripke’s Worlds978-3-7643-8504-0Series ISSN 2297-0282 Series E-ISSN 2297-0290
9#
發(fā)表于 2025-3-23 02:52:01 | 只看該作者
Olivier Gasquet,Andreas Herzig,Fran?ois SchwarzentAims at filling the gap between existing introductory and advanced textbooks.Introduces to the most important modal logics with multiple modalities from the perspective of the associated reasoning tas
10#
發(fā)表于 2025-3-23 06:38:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 15:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大姚县| 万载县| 黄梅县| 会东县| 女性| 峨眉山市| 平利县| 阜阳市| 突泉县| 安康市| 虹口区| 凭祥市| 文水县| 永仁县| 阿克陶县| 华容县| 嘉义市| 金湖县| 剑河县| 江源县| 泰和县| 枣阳市| 延庆县| 佳木斯市| 淮北市| 武鸣县| 县级市| 长宁区| 桦川县| 永新县| 樟树市| 山阴县| 锡林郭勒盟| 镇远县| 册亨县| 衡阳县| 延津县| 瑞金市| 安图县| 莲花县| 无为县|