找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Join Geometries; A Theory of Convex S Walter Prenowitz,James Jantosciak Textbook 1979 Springer-Verlag New York Inc. 1979 Equivalence.Factor

[復(fù)制鏈接]
查看: 13717|回復(fù): 53
樓主
發(fā)表于 2025-3-21 18:50:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Join Geometries
副標(biāo)題A Theory of Convex S
編輯Walter Prenowitz,James Jantosciak
視頻videohttp://file.papertrans.cn/502/501137/501137.mp4
叢書名稱Undergraduate Texts in Mathematics
圖書封面Titlebook: Join Geometries; A Theory of Convex S Walter Prenowitz,James Jantosciak Textbook 1979 Springer-Verlag New York Inc. 1979 Equivalence.Factor
描述The main object of this book is to reorient and revitalize classical geometry in a way that will bring it closer to the mainstream of contemporary mathematics. The postulational basis of the subject will be radically revised in order to construct a broad-scale and conceptually unified treatment. The familiar figures of classical geometry-points, segments, lines, planes, triangles, circles, and so on-stem from problems in the physical world and seem to be conceptually unrelated. However, a natural setting for their study is provided by the concept of convex set, which is compara- tively new in the history of geometrical ideas. The familiarfigures can then appear as convex sets, boundaries of convex sets, or finite unions of convex sets. Moreover, two basic types of figure in linear geometry are special cases of convex set: linear space (point, line, and plane) and halfspace (ray, halfplane, and halfspace). Therefore we choose convex set to be the central type of figure in our treatment of geometry. How can the wealth of geometric knowledge be organized around this idea? By defini- tion, a set is convex if it contains the segment joining each pair of its points; that is, if it is clo
出版日期Textbook 1979
關(guān)鍵詞Equivalence; Factor; Finite; Geometrie; Konvexe Menge; Maxima; Morphism; addition; character; function; mathem
版次1
doihttps://doi.org/10.1007/978-1-4613-9438-9
isbn_softcover978-1-4613-9440-2
isbn_ebook978-1-4613-9438-9Series ISSN 0172-6056 Series E-ISSN 2197-5604
issn_series 0172-6056
copyrightSpringer-Verlag New York Inc. 1979
The information of publication is updating

書目名稱Join Geometries影響因子(影響力)




書目名稱Join Geometries影響因子(影響力)學(xué)科排名




書目名稱Join Geometries網(wǎng)絡(luò)公開度




書目名稱Join Geometries網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Join Geometries被引頻次




書目名稱Join Geometries被引頻次學(xué)科排名




書目名稱Join Geometries年度引用




書目名稱Join Geometries年度引用學(xué)科排名




書目名稱Join Geometries讀者反饋




書目名稱Join Geometries讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:49:44 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:13:37 | 只看該作者
Undergraduate Texts in Mathematicshttp://image.papertrans.cn/j/image/501137.jpg
地板
發(fā)表于 2025-3-22 07:18:59 | 只看該作者
5#
發(fā)表于 2025-3-22 12:15:09 | 只看該作者
978-1-4613-9440-2Springer-Verlag New York Inc. 1979
6#
發(fā)表于 2025-3-22 15:19:59 | 只看該作者
Join Geometries978-1-4613-9438-9Series ISSN 0172-6056 Series E-ISSN 2197-5604
7#
發(fā)表于 2025-3-22 19:34:18 | 只看該作者
Rays and Halfspaces, the concepts taken up is that of opposite rays which is suggested by the idea of opposite directions from a point. Secondly the notion of ray is generalized to that of halfspace. Then half spaces which have a common bounding linear space or edge are studied in a treatment that parallels that given for rays.
8#
發(fā)表于 2025-3-22 22:13:31 | 只看該作者
9#
發(fā)表于 2025-3-23 03:28:40 | 只看該作者
The Operation of Extension,involving extension are introduced to complete the basic postulate set. These are employed to derive principles and formulas involving extension and join which supplement and enrich the formal theory of join in Chapters 2 and 3. The theory is applied to new ideas: extreme points of convex sets, line
10#
發(fā)表于 2025-3-23 07:36:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尉犁县| 稻城县| 麦盖提县| 通河县| 霍山县| 通许县| 南宫市| 南涧| 和顺县| 龙陵县| 汪清县| 台中县| 蕲春县| 昂仁县| 林口县| 仙桃市| 新宁县| 宕昌县| 浙江省| 怀化市| 错那县| 佳木斯市| 太湖县| 大余县| 曲靖市| 哈巴河县| 政和县| 腾冲县| 金阳县| 乐昌市| 濮阳县| 广水市| 定南县| 乐昌市| 邵阳县| 丽水市| 河津市| 宁河县| 乐东| 合山市| 南宁市|