找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Python and Large Language Models; A Guide to Language Dilyan Grigorov Book 2024 Dilyan Grigorov 2024 Computer Science.Info

[復(fù)制鏈接]
查看: 38237|回復(fù): 40
樓主
發(fā)表于 2025-3-21 18:02:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Introduction to Python and Large Language Models
副標(biāo)題A Guide to Language
編輯Dilyan Grigorov
視頻videohttp://file.papertrans.cn/477/476483/476483.mp4
概述Provides practical applications of LLMs, with essential NLP concepts such as text preprocessing, and sentiment analysis.Covers Python programming concepts such as Python syntax, data types, functions,
圖書(shū)封面Titlebook: Introduction to Python and Large Language Models; A Guide to Language  Dilyan Grigorov Book 2024 Dilyan Grigorov 2024 Computer Science.Info
描述.Gain a solid foundation for Natural Language Processing (NLP) and Large Language Models (LLMs), emphasizing their significance in today’s computational world. This book is an introductory guide to NLP and LLMs with Python programming...The book starts with the basics of NLP and LLMs. It covers essential NLP concepts, such as text preprocessing, feature engineering, and sentiment analysis using Python. The book offers insights into Python programming, covering syntax, data types, conditionals, loops, functions, and object-oriented programming. Next, it delves deeper into LLMs, unraveling their complex components...You’ll learn about LLM elements, including embedding layers, feedforward layers, recurrent layers, and attention mechanisms. You’ll also explore important topics like tokens, token distributions, zero-shot learning, LLM hallucinations, and insights into popular LLM architectures such as GPT-4, BERT, T5, PALM, and others. Additionally, it covers Python libraries like Hugging Face, OpenAI API, and Cohere. The final chapter bridges theory with practical application, offering step-by-step examples of coded applications for tasks like text generation, summarization, language t
出版日期Book 2024
關(guān)鍵詞Computer Science; Informatics; Conference Proceedings; Research; Applications
版次1
doihttps://doi.org/10.1007/979-8-8688-0540-0
isbn_softcover979-8-8688-0539-4
isbn_ebook979-8-8688-0540-0
copyrightDilyan Grigorov 2024
The information of publication is updating

書(shū)目名稱Introduction to Python and Large Language Models影響因子(影響力)




書(shū)目名稱Introduction to Python and Large Language Models影響因子(影響力)學(xué)科排名




書(shū)目名稱Introduction to Python and Large Language Models網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Introduction to Python and Large Language Models網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Introduction to Python and Large Language Models被引頻次




書(shū)目名稱Introduction to Python and Large Language Models被引頻次學(xué)科排名




書(shū)目名稱Introduction to Python and Large Language Models年度引用




書(shū)目名稱Introduction to Python and Large Language Models年度引用學(xué)科排名




書(shū)目名稱Introduction to Python and Large Language Models讀者反饋




書(shū)目名稱Introduction to Python and Large Language Models讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:45:56 | 只看該作者
What Are Large Language Models?,ir lives. However, machines lack an inherent ability to comprehend and communicate in human language unless equipped with powerful AI algorithms. The long-standing research challenge and aspiration have been to enable machines to attain human-like reading, writing, and communication skills.
板凳
發(fā)表于 2025-3-22 02:32:19 | 只看該作者
地板
發(fā)表于 2025-3-22 05:41:15 | 只看該作者
5#
發(fā)表于 2025-3-22 12:32:37 | 只看該作者
Basic Overview of the Components of the LLM Architectures,r appreciating how LLMs transform raw textual data into meaningful, context-aware outputs. The key components discussed in this chapter include .. Each of these plays a pivotal role in enabling LLMs to process and generate human-like language.
6#
發(fā)表于 2025-3-22 13:10:39 | 只看該作者
7#
發(fā)表于 2025-3-22 21:00:17 | 只看該作者
Harnessing Python 3.11 and Python Libraries for LLM Development,from natural language processing to sophisticated AI-driven solutions. The advent of Python 3.11 brings a host of new features and optimizations that significantly enhance the development of these complex models. Coupled with an array of robust Python libraries, this chapter delves into the practica
8#
發(fā)表于 2025-3-23 00:46:42 | 只看該作者
9#
發(fā)表于 2025-3-23 03:07:15 | 只看該作者
Hugging Face, OpenAI API, and Cohere. The final chapter bridges theory with practical application, offering step-by-step examples of coded applications for tasks like text generation, summarization, language t979-8-8688-0539-4979-8-8688-0540-0
10#
發(fā)表于 2025-3-23 05:50:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 03:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
内江市| 商洛市| 太原市| 巧家县| 自治县| 开原市| 贵德县| 东方市| 河东区| 平果县| 西乌珠穆沁旗| 皋兰县| 新沂市| 新竹县| 开平市| 伊吾县| 蒙阴县| 石棉县| 乌拉特中旗| 鄱阳县| 云南省| 响水县| 苍山县| 谷城县| 淮阳县| 区。| 铜山县| 安泽县| 阳高县| 宜川县| 永州市| 北流市| 合阳县| 平定县| 望谟县| 丹棱县| 子洲县| 弥渡县| 图木舒克市| 玉林市| 河曲县|