找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ICGG 2024 - Proceedings of the 21st International Conference on Geometry and Graphics; Volume 1 Kazuki Takenouchi Conference proceedings 20

[復(fù)制鏈接]
樓主: ergonomics
11#
發(fā)表于 2025-3-23 13:45:26 | 只看該作者
Frégier’s Theorem in?Three Dimensions quadrics can be obtained as so-called generalized offsets to quadrics with an offset function depending on the Gaussian curvature. Further, we shall discuss some of the common features and differences of the planar and spatial Frégier transform.
12#
發(fā)表于 2025-3-23 14:41:49 | 只看該作者
Projectivities and Collineations, a Constructive Approachan ask for orthogonal pairs .. It turns out that there exist, in algebraic sense, two such pairs, and they define an involutoric projectivity . connected to ., and they may coincide. If . is not parabolic, its (real or conjugate imaginary) fixed lines define a second involutoric projectivity .For a
13#
發(fā)表于 2025-3-23 21:27:17 | 只看該作者
14#
發(fā)表于 2025-3-23 23:12:44 | 只看該作者
15#
發(fā)表于 2025-3-24 03:01:52 | 只看該作者
16#
發(fā)表于 2025-3-24 07:09:28 | 只看該作者
Polyhedral Realization as?Deltahedra Using Subgraph Isomorphism Testgraphs into two groups: composite deltahedra, which are composed by joining two deltahedra, and non-composite deltahedra. Composite deltahedra are realized by finding two smaller graphs that are subgraph isomorphic to each graph structure and augmenting the corresponding deltahedra already realized.
17#
發(fā)表于 2025-3-24 12:00:08 | 只看該作者
The Relationship Between Penrose Triangle and Toroidal Impossible Object of Square Prismsng impossible objects constructed from square prisms. The author’s focus is exclusively on analyzing TIOSP. To achieve this, the author treats TIOSP as realistic objects by representing them with 3D vectors in mathematics. Through experimentation, this study shows that each TIOSP can be transformed
18#
發(fā)表于 2025-3-24 16:38:28 | 只看該作者
Perfect Circles, Amicable Triangles – Extrema on Quasi-main Cevians and Main Cevians, Quasi-bisectornts this simple 15-cevians structure having many very interesting properties. Adding . to this we get much more objects to research. This study deals with, among other things, the cevians mentioned in the title and the angle bisectors occurring throughout the structure. There are at least 8 characte
19#
發(fā)表于 2025-3-24 20:16:23 | 只看該作者
Maclaurin Trisectrices as?,-Affine Loci of?the?First Isogonic and?Isodynamic Centersvertices of ., all parameterized by the same value of .. We demonstrate that the first isogonic centers . and the first isodynamic centers . of . lie on two Maclaurin trisectrices and differ by scaling and a rotation about the barycenter of ..
20#
發(fā)表于 2025-3-25 00:24:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 10:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
如皋市| 九江市| 合作市| 松溪县| 监利县| 化隆| 铜陵市| 平阴县| 岳池县| 盘山县| 宣恩县| 桦甸市| 云浮市| 南陵县| 青冈县| 乐平市| 福海县| 伊宁县| 平陆县| 青海省| 武安市| 百色市| 安新县| 鄯善县| 方山县| 灵寿县| 北川| 定南县| 玉溪市| 昌图县| 大安市| 开远市| 泗阳县| 宜城市| 浠水县| 茂名市| 犍为县| 昌宁县| 海阳市| 隆德县| 龙岩市|