找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Irreversibility and Causality; Semigroups and Rigge Arno Bohm,Heinz-Dietrich Doebner,Piotr Kielanowski Conference proceedings 1998 Springer

[復(fù)制鏈接]
樓主: 外表
41#
發(fā)表于 2025-3-28 15:25:22 | 只看該作者
Quantum scattering of resonances: Poles of a continued ,-matrix and poles of an extended resolvent,rix and through the poles of an extended resolvent is meaningful only if one specifies an appropriate rigged Hilbert space for the extended resolvent. This means that the test space Φ with an appropriate topology should be specified. If it is done our theorem (see Sect. 5) gives the sufficient condi
42#
發(fā)表于 2025-3-28 21:08:25 | 只看該作者
43#
發(fā)表于 2025-3-29 00:18:13 | 只看該作者
CP-violation problem beyond the standard lee-oehme-yang theory,ased on the famous Weisskopf-Wigner (W.W.) approximation. New unconditional CP-violation effects were derived, independent of the ones known before, as well as new unconditional tests of the CPT- and T-invariances and new results for the .., . correlations were found. On the base of these new theore
44#
發(fā)表于 2025-3-29 04:50:48 | 只看該作者
45#
發(fā)表于 2025-3-29 10:28:01 | 只看該作者
46#
發(fā)表于 2025-3-29 13:55:38 | 只看該作者
47#
發(fā)表于 2025-3-29 18:52:28 | 只看該作者
From stochastic semigroups to chaotic dynamics,s projections of Kolmogorov dynamical systems. This result shows moreover the physical significance of the Misra-Prigogine-Courbage theory of irreversibility. Because we want positivity preserving transformations, our procedure although analogous to the Sz-Nagy-Foias Dilation theory has a different viewpoint, that of positive dilations.
48#
發(fā)表于 2025-3-29 20:35:13 | 只看該作者
49#
發(fā)表于 2025-3-30 02:57:43 | 只看該作者
50#
發(fā)表于 2025-3-30 05:32:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 08:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彭阳县| 汾西县| 四子王旗| 甘谷县| 棋牌| 富蕴县| 普陀区| 连州市| 大兴区| 西华县| 巴马| 双江| 柳江县| 泗阳县| 安泽县| 会昌县| 铁岭县| 民乐县| 梨树县| 禄丰县| 夹江县| 宣化县| 遂宁市| 麦盖提县| 米林县| 四会市| 濮阳县| SHOW| 安国市| 会同县| 万山特区| 明水县| 清镇市| 桓仁| 西丰县| 龙井市| 灵台县| 水城县| 府谷县| 赞皇县| 新安县|