找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ion Transport through Biological Membranes; An Integrated Theore Michael C. Mackey Book 1975 Springer-Verlag Berlin · Heidelberg 1975 Bioma

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:01:26 | 只看該作者
Conservation and Field Equationsnd concentration gradients across the membrane. All of the derivations of the conservation equations in this chapter are to be found in Mackey and McNeel (1973), and also can be found in alternate forms in the literature. In Chapter 12 I illustrate how they arise naturally from a molecular formulation of ED theory.
12#
發(fā)表于 2025-3-23 15:03:39 | 只看該作者
Admittance Properties of the Electrodiffusion Equationsof . and the excitable cell from .. Transverse impedance measurements on both of these systems in the resting state gave data that was interpreted as arising from a membrane capacity (C.) of approximately 1μ.F/cm. in parallel with a membrane resistance (R.) on the order of 10. ohm-cm. (Curtis and Cole 1938; Cole and Hodgkin, 1939).
13#
發(fā)表于 2025-3-23 21:22:17 | 只看該作者
14#
發(fā)表于 2025-3-24 02:08:09 | 只看該作者
Relationship Between the Microscopic and Macroscopic Formulations of Electrodiffusion Theoryonservation equations. The same basic physical model was developed in the previous chapter, but from a microscopic basis. It is the purpose of this chapter to examine the connection between the two approaches.
15#
發(fā)表于 2025-3-24 02:23:55 | 只看該作者
The Microscopic Model in a Steady State: No Concentration Gradientsgradients across the membrane. After some preliminary remarks on spatial gradients, I pass to considerations of predicted ionic chord conductance, interionic selectivity, and chord conductance temperature coefficients as functions of applied electric field strength, and ion-scatterer interactions and parameters.
16#
發(fā)表于 2025-3-24 09:22:45 | 只看該作者
Steady State and Dynamical Properties of the Macroscopic Modelvement when t. ? t. and ionic energy is essentially unaltered by the presence of electric fields or concentration gradients. In Chapter 12 I connected the macroscopic model with the microscopic model developed in Chapter 11. In this chapter I examine some of the steady state and time dependent properties of the macroscopic model.
17#
發(fā)表于 2025-3-24 13:13:10 | 只看該作者
18#
發(fā)表于 2025-3-24 17:16:01 | 只看該作者
19#
發(fā)表于 2025-3-24 20:06:37 | 只看該作者
20#
發(fā)表于 2025-3-25 02:51:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 18:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武穴市| 梨树县| 蚌埠市| 屯昌县| 灌阳县| 玛沁县| 鄱阳县| 双流县| 罗源县| 黄浦区| 克什克腾旗| 马公市| 德昌县| 青岛市| 阳高县| 南木林县| 儋州市| 抚宁县| 合水县| 当雄县| 揭西县| 太仓市| 陇西县| 武安市| 临猗县| 简阳市| 广德县| 琼结县| 梨树县| 通化市| 成武县| 疏勒县| 普宁市| 万盛区| 桑日县| 曲松县| 区。| 天长市| 绿春县| 英吉沙县| 乌鲁木齐市|