找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Investigations in Algebraic Theory of Combinatorial Objects; I. A. Farad?ev,A. A. Ivanov,A. J. Woldar Book 1994 Springer Science+Business

[復制鏈接]
樓主: finesse
41#
發(fā)表于 2025-3-28 17:47:10 | 只看該作者
Computation of Lengths of Orbits of a Subgroup in a Transitive Permutation Grouproup as an automorphism group. For example, in Section 3 this method is used to construct a new cubic graph on 110 vertices which is edge- but not vertex-transitive and which admits .. (11) as automorphism group.
42#
發(fā)表于 2025-3-28 22:16:03 | 只看該作者
Construction of an Automorphic Graph on 280 Vertices Using Finite Geometriesng for special constructions which give a simple and beautiful description of certain distance-transitive graphs. The necessity of such constructions also arises in the interpretation of graphs which were discovered by means of a computer.
43#
發(fā)表于 2025-3-29 00:10:51 | 只看該作者
44#
發(fā)表于 2025-3-29 03:17:37 | 只看該作者
45#
發(fā)表于 2025-3-29 07:18:18 | 只看該作者
On ,-Local Analysis of Permutation Groupshe alternating (..) groups was given. It is interesting to know what part of this description can be obtained by the classical methods of permutation group theory. In particular, the following questions are of interest.
46#
發(fā)表于 2025-3-29 14:37:20 | 只看該作者
The Subschemes of the Hamming Schemeubschemes is closely related to the study of the lattice of overgroups of the exponentiation .. ↑ .. in the symmetric group .. For this reason the results of the paper can be used in the study of symmetry in algebraic codes, and in the classification of Boolean functions. Some examples of subschemes
47#
發(fā)表于 2025-3-29 18:09:25 | 只看該作者
48#
發(fā)表于 2025-3-29 23:22:55 | 只看該作者
49#
發(fā)表于 2025-3-30 03:52:14 | 只看該作者
50#
發(fā)表于 2025-3-30 06:44:07 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 11:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
洛浦县| 开鲁县| 新田县| 台南县| 佛学| 康定县| 汕尾市| 凌海市| 德格县| 左云县| 扶沟县| 乡城县| 南陵县| 石渠县| 滨海县| 桂东县| 福安市| 玉田县| 丁青县| 阿拉尔市| 栖霞市| 泽库县| 桐庐县| 罗江县| 新乡市| 新乡县| 嵊泗县| 从江县| 融水| 汝南县| 武隆县| 普定县| 九寨沟县| 拉孜县| 安义县| 靖江市| 桃园县| 平泉县| 盐亭县| 卓尼县| 丹阳市|