找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introductory Tiling Theory for Computer Graphics; Craig S. Kaplan Book 2009 Springer Nature Switzerland AG 2009

[復(fù)制鏈接]
樓主: EXERT
11#
發(fā)表于 2025-3-23 11:50:00 | 只看該作者
12#
發(fā)表于 2025-3-23 14:17:08 | 只看該作者
Tiling Basics,rovisionally formalize these notions by stating that a set . of shapes . the plane if the union of all shapes in . is the entire plane, and that an . is a non-empty intersection between two tiles (in which case . has no overlaps if it consists of pairwise disjoint sets). Under this definition, the t
13#
發(fā)表于 2025-3-23 19:11:10 | 只看該作者
Symmetry,be surprising that there is a strong connection between symmetry and tilings—tilings of the plane typically feature some degree of repetition, and symmetry is a means of measuring that repetition. Planar symmetry groups have served as a powerful tool in understanding and classifying designs belongin
14#
發(fā)表于 2025-3-23 23:35:22 | 只看該作者
Isohedral Tilings, every tile plays an equivalent role relative to the whole. Despite that constraint, they still permit a wide range of expression. Decorative tilings developed without explicit mathematical knowledge are frequently isohedral. M.C. Escher developed his own “l(fā)ayman’s theory” for his regular divisions
15#
發(fā)表于 2025-3-24 03:33:41 | 只看該作者
16#
發(fā)表于 2025-3-24 10:15:06 | 只看該作者
Tiling Basics,t, worthwhile mathematical objects. I will deliberately add more constraints than are strictly necessary mathematically, in order to arrive at a definition suitable for the kinds of tilings that we encounter in computer graphics. After formulating a practical definition, I explore some of the basic
17#
發(fā)表于 2025-3-24 11:14:42 | 只看該作者
18#
發(fā)表于 2025-3-24 15:21:28 | 只看該作者
19#
發(fā)表于 2025-3-24 22:10:12 | 只看該作者
20#
發(fā)表于 2025-3-24 23:27:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东明县| 巴南区| 东港市| 三江| 柳江县| 静安区| 梁山县| 长丰县| 共和县| 苏尼特右旗| 嘉祥县| 吐鲁番市| 儋州市| 布拖县| 高州市| 巩义市| 东至县| 寻甸| 南和县| 运城市| 中西区| 奎屯市| 乌兰浩特市| 文成县| 普定县| 襄垣县| 米脂县| 竹溪县| 垫江县| 塘沽区| 九台市| 浮山县| 颍上县| 玛沁县| 呼玛县| 张家港市| 高清| 曲松县| 莲花县| 习水县| 青海省|