找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to ?2-invariants; Holger Kammeyer Book 2019 The Editor(s) (if applicable) and The Author(s), under exclusive license to Sprin

[復(fù)制鏈接]
查看: 51552|回復(fù): 40
樓主
發(fā)表于 2025-3-21 16:06:38 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Introduction to ?2-invariants
編輯Holger Kammeyer
視頻videohttp://file.papertrans.cn/475/474444/474444.mp4
概述An up-to-date and user-friendly introduction to the rapidly developing field of ?2-invariants.Proceeds quickly to the research level after thoroughly covering all the basics.Contains many motivating e
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Introduction to ?2-invariants;  Holger Kammeyer Book 2019 The Editor(s) (if applicable) and The Author(s), under exclusive license to Sprin
描述This book introduces the reader to the most important concepts and problems in the field of ?2-invariants. After some foundational material on group von Neumann algebras, ?2-Betti numbers are defined and their use is illustrated by several examples. The text continues with Atiyah‘s question on possible values of ?2-Betti numbers and the relation to Kaplansky‘s zero divisor conjecture. The general definition of ?2-Betti numbers allows for applications in group theory. A whole chapter is dedicated to Lück‘s approximation theorem and its generalizations. The final chapter deals with ?2-torsion, twisted variants and the conjectures relating them to torsion growth in homology..?.The text provides a self-contained treatment that constructs the required specialized concepts from scratch. It comes with numerous exercises and examples, so that both graduate students and researchers will find it useful for self-study or as a basis for an advanced lecture course..
出版日期Book 2019
關(guān)鍵詞? 2-invariants; ? 2-Betti Numbers; ? 2-torsion; Lück Approximation; Torsion Growth
版次1
doihttps://doi.org/10.1007/978-3-030-28297-4
isbn_softcover978-3-030-28296-7
isbn_ebook978-3-030-28297-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Introduction to ?2-invariants影響因子(影響力)




書目名稱Introduction to ?2-invariants影響因子(影響力)學(xué)科排名




書目名稱Introduction to ?2-invariants網(wǎng)絡(luò)公開度




書目名稱Introduction to ?2-invariants網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Introduction to ?2-invariants被引頻次




書目名稱Introduction to ?2-invariants被引頻次學(xué)科排名




書目名稱Introduction to ?2-invariants年度引用




書目名稱Introduction to ?2-invariants年度引用學(xué)科排名




書目名稱Introduction to ?2-invariants讀者反饋




書目名稱Introduction to ?2-invariants讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:07:16 | 只看該作者
,-Betti Numbers of Groups,n Neumann dimension to arbitrary modules over the group von Neumann algebra. This leads to the definition of ..-Betti numbers of arbitrary .-spaces and hence allows the definition of ..-Betti numbers of general discrete countable groups via classifying spaces. We give example computations for variou
板凳
發(fā)表于 2025-3-22 02:33:06 | 只看該作者
,Lück’s Approximation Theorem,Banach-, ..-, and von Neumann algebras. The proof is then presented in a manner that emphasizes the two main ingredients: weak convergence of spectral measures and the logarithmic bound on spectral distribution functions. We discuss in detail in how far some of the assumptions in the theorem can be
地板
發(fā)表于 2025-3-22 04:58:29 | 只看該作者
5#
發(fā)表于 2025-3-22 09:06:16 | 只看該作者
,-Betti Numbers of CW Complexes,iscuss Atiyah’s question on possible values of ..-Betti numbers and expound how this is relevant for Kaplansky’s zero divisor conjecture. The chapter concludes with proofs that positive ..-Betti numbers obstruct self-coverings, mapping torus structures, and circle actions on even dimensional hyperbolic manifolds.
6#
發(fā)表于 2025-3-22 14:10:30 | 只看該作者
7#
發(fā)表于 2025-3-22 20:59:10 | 只看該作者
8#
發(fā)表于 2025-3-23 01:00:47 | 只看該作者
Torsion Invariants,ic setting, we present the Bergeron Venkatesh conjecture on torsion in twisted homology. We conclude the text with an account on profinite rigidity, (non-)profiniteness of ..-Betti numbers and a proof that the torsion approximation conjecture implies profiniteness of volume for 3-manifolds.
9#
發(fā)表于 2025-3-23 04:45:28 | 只看該作者
10#
發(fā)表于 2025-3-23 05:39:12 | 只看該作者
0075-8434 horoughly covering all the basics.Contains many motivating eThis book introduces the reader to the most important concepts and problems in the field of ?2-invariants. After some foundational material on group von Neumann algebras, ?2-Betti numbers are defined and their use is illustrated by several
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 00:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中江县| 河津市| 镶黄旗| 大同县| 韶山市| 婺源县| 博野县| 台安县| 察哈| 泸州市| 苍梧县| 清原| 长武县| 织金县| 阜康市| 阿坝县| 贵阳市| 那坡县| 唐海县| 汉源县| 平阳县| 关岭| 福建省| 千阳县| 望江县| 濉溪县| 天镇县| 正镶白旗| 眉山市| 永嘉县| 金寨县| 漾濞| 南木林县| 宣化县| 普兰县| 平安县| 来凤县| 巴楚县| 越西县| 乌拉特后旗| 泗阳县|