找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to the Theory of Bases; Jürg T. Marti Book 1969 Springer-Verlag Berlin Heidelberg 1969 Banach space.Basis (Math.).Finite.Topo

[復(fù)制鏈接]
樓主: 拿著錫
41#
發(fā)表于 2025-3-28 16:42:22 | 只看該作者
0081-3877 aces has grown enormously. Much of this literature has for its origin a question raised in Banach‘s book, the question whether every sepa- rable Banach space possesses a basis or not. The notion of a basis employed here is a generalization of that of a Hamel basis for a finite dimensional vector spa
42#
發(fā)表于 2025-3-28 22:10:33 | 只看該作者
Linear Transformations,ded for the development of the theory of bases. We begin by defining various abstract spaces, and we list their most important properties. Then we investigate linear transformations of one space into another, continue with some facts on conjugate spaces, and conclude with results for several spacial spaces.
43#
發(fā)表于 2025-3-29 02:35:52 | 只看該作者
Book 1969rown enormously. Much of this literature has for its origin a question raised in Banach‘s book, the question whether every sepa- rable Banach space possesses a basis or not. The notion of a basis employed here is a generalization of that of a Hamel basis for a finite dimensional vector space. For a
44#
發(fā)表于 2025-3-29 05:20:39 | 只看該作者
45#
發(fā)表于 2025-3-29 10:25:03 | 只看該作者
Convergence of Series in Banach Spaces, Dvoretzky-Rogers theorem. The latter states the existence in every infinite dimensional Banach space of an unconditional series which is not absolutely convergent, a fact, which has been conjectured for about twenty years and which has been settled down by . and . in 1950.
46#
發(fā)表于 2025-3-29 11:49:58 | 只看該作者
Bases for Banach Spaces,aphs are devoted to retro-, shrinking, boundedly complete, unconditional, absolutely convergent and uniform bases. Some applications of summability methods on the theory of bases are given in the sixth section and in the last paragraph bases for the special spaces c., l.(l ≤ p < ∞), .[0,1], ..[0,l] (l ≤ p < ∞), L.[0,2π] and .. are considered.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 14:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆化县| 图木舒克市| 临武县| 两当县| 高碑店市| 攀枝花市| 德兴市| 婺源县| 曲松县| 锦州市| 宁明县| 呼玛县| 吉隆县| 柞水县| 玉山县| 伊宁市| 太湖县| 乌恰县| 大田县| 灵武市| 石台县| 安塞县| 盐城市| 古丈县| 拉萨市| 开阳县| 荣成市| 九寨沟县| 长寿区| 贡山| 本溪市| 育儿| 大连市| 万载县| 南川市| 西宁市| 肇州县| 高密市| 邳州市| 南昌县| 依安县|