找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to the Geometry of Foliations, Part A; Foliations on Compac Gilbert Hector,Ulrich Hirsch Book 1986Latest edition Springer Fach

[復(fù)制鏈接]
樓主: 無法仿效
11#
發(fā)表于 2025-3-23 11:20:33 | 只看該作者
ections in the areas of social networks and applications to data mining. The second edition of?ESNAM?is a truly outstanding reference appealing to researchers, practitioners, instructors and students (both undergraduate and graduate), as well as the general public.?.This updated reference integrates
12#
發(fā)表于 2025-3-23 14:19:51 | 只看該作者
Foliations on Compact Surfaces,or fields on surfaces. This is one reason why we start our investigations of foliations on manifolds with vector fields on surfaces. Another reason for this approach is the fact that many of the phenomena on manifolds of higher dimensions which will be studied in this book already appear on surfaces
13#
發(fā)表于 2025-3-23 18:32:20 | 只看該作者
Foliations on Compact Surfaces,or fields on surfaces. This is one reason why we start our investigations of foliations on manifolds with vector fields on surfaces. Another reason for this approach is the fact that many of the phenomena on manifolds of higher dimensions which will be studied in this book already appear on surfaces and can be most easily described there.
14#
發(fā)表于 2025-3-24 00:56:46 | 只看該作者
Fundamentals on Foliations,In this chapter the central subject of this book is presented in full generality. Before we give (in 2.1) the definition we study an intermediate class of objects, the so-called foliated bundles. This is for three reasons:
15#
發(fā)表于 2025-3-24 02:45:08 | 只看該作者
16#
發(fā)表于 2025-3-24 10:29:21 | 只看該作者
https://doi.org/10.1007/978-3-322-90115-6Homotopy; Vector field; boundary element method; diffeomorphism; eXist; form; group; homotopy theory; locali
17#
發(fā)表于 2025-3-24 14:31:20 | 只看該作者
18#
發(fā)表于 2025-3-24 18:27:15 | 只看該作者
Introduction to the Geometry of Foliations, Part A978-3-322-90115-6Series ISSN 0179-2156
19#
發(fā)表于 2025-3-24 19:43:51 | 只看該作者
0179-2156 Overview: 978-3-528-18501-5978-3-322-90115-6Series ISSN 0179-2156
20#
發(fā)表于 2025-3-25 01:06:07 | 只看該作者
Aspects of Mathematicshttp://image.papertrans.cn/i/image/474362.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 03:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会东县| 绥宁县| 铁岭市| 子长县| 台山市| 奉新县| 宣汉县| 鄄城县| 稷山县| 丰宁| 星子县| 武鸣县| 呼玛县| 明溪县| 锡林郭勒盟| 孙吴县| 莱阳市| 临江市| 浦县| 林口县| 虎林市| 遵义县| 徐水县| 萨迦县| 泰安市| 伊宁县| 衡阳市| 车险| 璧山县| 农安县| 揭西县| 城固县| 肃北| 东丰县| 伊春市| 余江县| 营山县| 泊头市| 从江县| 石景山区| 塔城市|