找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to the Geometry of Foliations, Part A; Foliations on Compac Gilbert Hector,Ulrich Hirsch Book 1986Latest edition Springer Fach

[復制鏈接]
樓主: 無法仿效
11#
發(fā)表于 2025-3-23 11:20:33 | 只看該作者
ections in the areas of social networks and applications to data mining. The second edition of?ESNAM?is a truly outstanding reference appealing to researchers, practitioners, instructors and students (both undergraduate and graduate), as well as the general public.?.This updated reference integrates
12#
發(fā)表于 2025-3-23 14:19:51 | 只看該作者
Foliations on Compact Surfaces,or fields on surfaces. This is one reason why we start our investigations of foliations on manifolds with vector fields on surfaces. Another reason for this approach is the fact that many of the phenomena on manifolds of higher dimensions which will be studied in this book already appear on surfaces
13#
發(fā)表于 2025-3-23 18:32:20 | 只看該作者
Foliations on Compact Surfaces,or fields on surfaces. This is one reason why we start our investigations of foliations on manifolds with vector fields on surfaces. Another reason for this approach is the fact that many of the phenomena on manifolds of higher dimensions which will be studied in this book already appear on surfaces and can be most easily described there.
14#
發(fā)表于 2025-3-24 00:56:46 | 只看該作者
Fundamentals on Foliations,In this chapter the central subject of this book is presented in full generality. Before we give (in 2.1) the definition we study an intermediate class of objects, the so-called foliated bundles. This is for three reasons:
15#
發(fā)表于 2025-3-24 02:45:08 | 只看該作者
16#
發(fā)表于 2025-3-24 10:29:21 | 只看該作者
https://doi.org/10.1007/978-3-322-90115-6Homotopy; Vector field; boundary element method; diffeomorphism; eXist; form; group; homotopy theory; locali
17#
發(fā)表于 2025-3-24 14:31:20 | 只看該作者
18#
發(fā)表于 2025-3-24 18:27:15 | 只看該作者
Introduction to the Geometry of Foliations, Part A978-3-322-90115-6Series ISSN 0179-2156
19#
發(fā)表于 2025-3-24 19:43:51 | 只看該作者
0179-2156 Overview: 978-3-528-18501-5978-3-322-90115-6Series ISSN 0179-2156
20#
發(fā)表于 2025-3-25 01:06:07 | 只看該作者
Aspects of Mathematicshttp://image.papertrans.cn/i/image/474362.jpg
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 09:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
青神县| 三台县| 洛南县| 西宁市| 丹凤县| 凉城县| 二连浩特市| 浦东新区| 淳化县| 公安县| 余干县| 武陟县| 杭州市| 井冈山市| 梓潼县| 淮安市| 宁河县| 灌云县| 城口县| 红河县| 沁源县| 东兴市| 攀枝花市| 克什克腾旗| 洛宁县| 绵竹市| 时尚| 天台县| 平定县| 广东省| 北辰区| 武山县| 威海市| 万载县| 广汉市| 明溪县| 浠水县| 宣恩县| 邓州市| 玉环县| 东丰县|