找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to the Galois Correspondence; Maureen H. Fenrick Book 19921st edition Birkh?user Boston 1992 Abelian group.Area.Volume.algebr

[復制鏈接]
查看: 41024|回復: 35
樓主
發(fā)表于 2025-3-21 19:57:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Introduction to the Galois Correspondence
編輯Maureen H. Fenrick
視頻videohttp://file.papertrans.cn/475/474360/474360.mp4
圖書封面Titlebook: Introduction to the Galois Correspondence;  Maureen H. Fenrick Book 19921st edition Birkh?user Boston 1992 Abelian group.Area.Volume.algebr
描述In this presentation of the Galois correspondence, modem theories of groups and fields are used to study problems, some of which date back to the ancient Greeks. The techniques used to solve these problems, rather than the solutions themselves, are of primary importance. The ancient Greeks were concerned with constructibility problems. For example, they tried to determine if it was possible, using straightedge and compass alone, to perform any of the following tasks? (1) Double an arbitrary cube; in particular, construct a cube with volume twice that of the unit cube. (2) Trisect an arbitrary angle. (3) Square an arbitrary circle; in particular, construct a square with area 7r. (4) Construct a regular polygon with n sides for n > 2. If we define a real number c to be constructible if, and only if, the point (c,O) can be constructed starting with the points (0,0) and (1,0), then we may show that the set of constructible numbers is a subfield of the field R of real numbers containing the field Q of rational numbers. Such a subfield is called an intermediate field of Rover Q. We may thus gain insight into the constructibility problems by studying intermediate fields of Rover Q. In cha
出版日期Book 19921st edition
關鍵詞Abelian group; Area; Volume; algebra; field; form; polygon; presentation; real number; set; techniques
版次1
doihttps://doi.org/10.1007/978-1-4684-0026-7
isbn_ebook978-1-4684-0026-7
copyrightBirkh?user Boston 1992
The information of publication is updating

書目名稱Introduction to the Galois Correspondence影響因子(影響力)




書目名稱Introduction to the Galois Correspondence影響因子(影響力)學科排名




書目名稱Introduction to the Galois Correspondence網(wǎng)絡公開度




書目名稱Introduction to the Galois Correspondence網(wǎng)絡公開度學科排名




書目名稱Introduction to the Galois Correspondence被引頻次




書目名稱Introduction to the Galois Correspondence被引頻次學科排名




書目名稱Introduction to the Galois Correspondence年度引用




書目名稱Introduction to the Galois Correspondence年度引用學科排名




書目名稱Introduction to the Galois Correspondence讀者反饋




書目名稱Introduction to the Galois Correspondence讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:20:13 | 只看該作者
we may show that the set of constructible numbers is a subfield of the field R of real numbers containing the field Q of rational numbers. Such a subfield is called an intermediate field of Rover Q. We may thus gain insight into the constructibility problems by studying intermediate fields of Rover Q. In cha978-1-4684-0026-7
板凳
發(fā)表于 2025-3-22 01:51:38 | 只看該作者
,Preliminaries — Groups and Rings,tary theory of groups and rings, concentrating on examples that will be used in later chapters. Although some of the more straightforward proofs are left as exercises, the majority of the proofs in the first two sections are presented fully as we guide the student through the process of studying gro
地板
發(fā)表于 2025-3-22 05:45:16 | 只看該作者
5#
發(fā)表于 2025-3-22 09:07:38 | 只看該作者
,Preliminaries — Groups and Rings,eft as exercises, the majority of the proofs in the first two sections are presented fully as we guide the student through the process of studying groups via their normal subgroups and quotient groups.
6#
發(fā)表于 2025-3-22 15:14:11 | 只看該作者
7#
發(fā)表于 2025-3-22 17:43:36 | 只看該作者
o the ancient Greeks. The techniques used to solve these problems, rather than the solutions themselves, are of primary importance. The ancient Greeks were concerned with constructibility problems. For example, they tried to determine if it was possible, using straightedge and compass alone, to perf
8#
發(fā)表于 2025-3-22 23:17:50 | 只看該作者
Field Extensions,The field . of rationals is a subfield of the field . of reals, which is, in turn, a subfield of the field . of complex numbers. We then write . ? . ? . and say that . is an intermediate field of the extension . over ..
9#
發(fā)表于 2025-3-23 03:16:55 | 只看該作者
10#
發(fā)表于 2025-3-23 05:57:56 | 只看該作者
http://image.papertrans.cn/i/image/474360.jpg
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 13:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
来凤县| 策勒县| 云龙县| 特克斯县| 重庆市| 孟连| 巍山| 潼南县| 交口县| 尖扎县| 抚远县| 江阴市| 肃南| 留坝县| 开封市| 定日县| 昭觉县| 昔阳县| 儋州市| 台江县| 桃园市| 濉溪县| 常德市| 五台县| 孝感市| 永德县| 金沙县| 荔浦县| 手游| 凌源市| 南澳县| 商南县| 余干县| 嘉定区| 桓仁| 临沧市| 绵阳市| 马公市| 凉城县| 荆门市| 清徐县|