找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Time Series and Forecasting; Peter J. Brockwell,Richard A. Davis Textbook 2016Latest edition Springer Nature Switzerland A

[復(fù)制鏈接]
查看: 30300|回復(fù): 43
樓主
發(fā)表于 2025-3-21 16:44:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Introduction to Time Series and Forecasting
編輯Peter J. Brockwell,Richard A. Davis
視頻videohttp://file.papertrans.cn/475/474281/474281.mp4
概述Designed for use in full-year courses introducing univariate and multivariate time series and forecasting at the advanced undergraduate and graduate levels.Exercise problems at the end of each chapter
叢書名稱Springer Texts in Statistics
圖書封面Titlebook: Introduction to Time Series and Forecasting;  Peter J. Brockwell,Richard A. Davis Textbook 2016Latest edition Springer Nature Switzerland A
描述This book is aimed at the reader who wishes to gain a working knowledge of time series and forecasting methods as applied to economics, engineering and the natural and social sciences. It assumes knowledge only of basic calculus, matrix algebra and elementary statistics. ?This third edition contains detailed instructions for the use of the professional version of the Windows-based computer package ITSM2000, now available as a free download from the Springer Extras website. The logic and tools of time series model-building are developed in detail. Numerous exercises are included and the software can be used to analyze and forecast data sets of the user‘s own choosing. The book can also be used in conjunction with other time series packages such as those included in R. The programs in ITSM2000 however are menu-driven and can be used with minimal investment of time in the computational details..The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Many additional special topics are also covered..New to this edition:.A chapter devoted to Financial Time Series.Introducti
出版日期Textbook 2016Latest edition
關(guān)鍵詞ITSM2000; Forecasting; Univariate time series; Multivariate time series; Spectral analysis; Financial tim
版次3
doihttps://doi.org/10.1007/978-3-319-29854-2
isbn_ebook978-3-319-29854-2Series ISSN 1431-875X Series E-ISSN 2197-4136
issn_series 1431-875X
copyrightSpringer Nature Switzerland AG 2016
The information of publication is updating

書目名稱Introduction to Time Series and Forecasting影響因子(影響力)




書目名稱Introduction to Time Series and Forecasting影響因子(影響力)學(xué)科排名




書目名稱Introduction to Time Series and Forecasting網(wǎng)絡(luò)公開度




書目名稱Introduction to Time Series and Forecasting網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Introduction to Time Series and Forecasting被引頻次




書目名稱Introduction to Time Series and Forecasting被引頻次學(xué)科排名




書目名稱Introduction to Time Series and Forecasting年度引用




書目名稱Introduction to Time Series and Forecasting年度引用學(xué)科排名




書目名稱Introduction to Time Series and Forecasting讀者反饋




書目名稱Introduction to Time Series and Forecasting讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:55:07 | 只看該作者
Springer Nature Switzerland AG 2016
板凳
發(fā)表于 2025-3-22 00:49:24 | 只看該作者
地板
發(fā)表于 2025-3-22 06:25:43 | 只看該作者
ARMA Models,In this chapter we introduce an important parametric family of stationary time series, the autoregressive moving-average, or ARMA, processes. For a large class of autocovariance functions .(??) it is possible to find an ARMA process {..} with ACVF ..(??) such that .(??) is well approximated by ..(??).
5#
發(fā)表于 2025-3-22 09:58:17 | 只看該作者
Nonstationary and Seasonal Time Series Models,In this chapter we shall examine the problem of finding an appropriate model for a given set of observations {..,?.,?..} that are not necessarily generated by a stationary time series.
6#
發(fā)表于 2025-3-22 16:54:36 | 只看該作者
7#
發(fā)表于 2025-3-22 19:38:37 | 只看該作者
Multivariate Time Series,ependence within each component series {..} but also interdependence between the different component series {..} and {..}, . ≠ .. Much of the theory of univariate time series extends in a natural way to the multivariate case; however, new problems arise.
8#
發(fā)表于 2025-3-22 22:27:19 | 只看該作者
Peter J. Brockwell,Richard A. DavisDesigned for use in full-year courses introducing univariate and multivariate time series and forecasting at the advanced undergraduate and graduate levels.Exercise problems at the end of each chapter
9#
發(fā)表于 2025-3-23 05:08:49 | 只看該作者
10#
發(fā)表于 2025-3-23 09:31:06 | 只看該作者
Spectral Analysis,ess, which for some applications may be more illuminating. For example, in the design of a structure subject to a randomly fluctuating load, it is important to be aware of the presence in the loading force of a large sinusoidal component with a particular frequency to ensure that this is not a reson
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 09:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鲁山县| 东源县| 铜山县| 饶阳县| 浦江县| 河西区| 乌拉特后旗| 夏邑县| 新野县| 延安市| 德阳市| 大兴区| 定南县| 郯城县| 呈贡县| 绥滨县| 临湘市| 张掖市| 庆元县| 安阳县| 惠来县| 阳江市| 沈丘县| 南木林县| 东乌珠穆沁旗| 元氏县| 威海市| 江孜县| 保山市| 普安县| 商洛市| 瓮安县| 徐闻县| 洛阳市| 柳江县| 惠州市| 义乌市| 固阳县| 镇宁| 尼木县| 长顺县|