找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Stochastic Integration; Hui-Hsiung Kuo Textbook 2006 Springer-Verlag New York 2006 Brownian motion.Gaussian measure.Martin

[復(fù)制鏈接]
查看: 38717|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:17:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Introduction to Stochastic Integration
編輯Hui-Hsiung Kuo
視頻videohttp://file.papertrans.cn/475/474226/474226.mp4
概述Provides a concise introduction to the theory of stochastic integration, also called the Ito calculus.Closes the gap between more technically advanced books like Karatzas and Shreve (Springer) and les
叢書(shū)名稱(chēng)Universitext
圖書(shū)封面Titlebook: Introduction to Stochastic Integration;  Hui-Hsiung Kuo Textbook 2006 Springer-Verlag New York 2006 Brownian motion.Gaussian measure.Martin
描述In the Leibniz–Newton calculus, one learns the di?erentiation and integration of deterministic functions. A basic theorem in di?erentiation is the chain rule, which gives the derivative of a composite of two di?erentiable functions. The chain rule, when written in an inde?nite integral form, yields the method of substitution. In advanced calculus, the Riemann–Stieltjes integral is de?ned through the same procedure of “partition-evaluation-summation-limit” as in the Riemann integral. In dealing with random functions such as functions of a Brownian motion, the chain rule for the Leibniz–Newton calculus breaks down. A Brownian motionmovessorapidlyandirregularlythatalmostallofitssamplepathsare nowhere di?erentiable. Thus we cannot di?erentiate functions of a Brownian motion in the same way as in the Leibniz–Newton calculus. In 1944 Kiyosi It? o published the celebrated paper “Stochastic Integral” in the Proceedings of the Imperial Academy (Tokyo). It was the beginning of the It? o calculus, the counterpart of the Leibniz–Newton calculus for random functions. In this six-page paper, It? o introduced the stochastic integral and a formula, known since then as It? o’s formula. The It? o fo
出版日期Textbook 2006
關(guān)鍵詞Brownian motion; Gaussian measure; Martingale; Measure; Probability theory; Stochastic Differential Equat
版次1
doihttps://doi.org/10.1007/0-387-31057-6
isbn_softcover978-0-387-28720-1
isbn_ebook978-0-387-31057-2Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag New York 2006
The information of publication is updating

書(shū)目名稱(chēng)Introduction to Stochastic Integration影響因子(影響力)




書(shū)目名稱(chēng)Introduction to Stochastic Integration影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Introduction to Stochastic Integration網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Introduction to Stochastic Integration網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Introduction to Stochastic Integration被引頻次




書(shū)目名稱(chēng)Introduction to Stochastic Integration被引頻次學(xué)科排名




書(shū)目名稱(chēng)Introduction to Stochastic Integration年度引用




書(shū)目名稱(chēng)Introduction to Stochastic Integration年度引用學(xué)科排名




書(shū)目名稱(chēng)Introduction to Stochastic Integration讀者反饋




書(shū)目名稱(chēng)Introduction to Stochastic Integration讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:06:27 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:17:38 | 只看該作者
rs, practitioners, scholars and researchers interested in or working on any aspect of migration in any field. It should be particularly useful for people seeking information and knowledge about migration from f978-94-007-6179-7
地板
發(fā)表于 2025-3-22 06:30:25 | 只看該作者
5#
發(fā)表于 2025-3-22 09:38:58 | 只看該作者
6#
發(fā)表于 2025-3-22 15:59:31 | 只看該作者
7#
發(fā)表于 2025-3-22 17:21:37 | 只看該作者
8#
發(fā)表于 2025-3-22 21:33:43 | 只看該作者
9#
發(fā)表于 2025-3-23 05:26:12 | 只看該作者
10#
發(fā)表于 2025-3-23 08:52:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 01:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凯里市| 澜沧| 铜陵市| 平武县| 康保县| 延边| 绿春县| 永安市| 奎屯市| 从化市| 湘潭市| 保亭| 东至县| 綦江县| 霍州市| 孟津县| 浪卡子县| 柘荣县| 韶山市| 葫芦岛市| 江川县| 富蕴县| 沐川县| 图木舒克市| 庆城县| 溧水县| 荥阳市| 大邑县| 礼泉县| 若羌县| 迁西县| 永康市| 广丰县| 靖安县| 石狮市| 柳河县| 乌拉特后旗| 扎鲁特旗| 凤凰县| 灵川县| 水城县|