找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Soliton Theory: Applications to Mechanics; Ligia Munteanu,Stefania Donescu Book 2005 Springer Science+Business Media B.V.

[復(fù)制鏈接]
查看: 30443|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:46:18 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Introduction to Soliton Theory: Applications to Mechanics
編輯Ligia Munteanu,Stefania Donescu
視頻videohttp://file.papertrans.cn/475/474197/474197.mp4
叢書名稱Fundamental Theories of Physics
圖書封面Titlebook: Introduction to Soliton Theory: Applications to Mechanics;  Ligia Munteanu,Stefania Donescu Book 2005 Springer Science+Business Media B.V.
描述This monograph is planned to provide the application of the soliton theory to solve certain practical problems selected from the fields of solid mechanics, fluid mechanics and biomechanics. The work is based mainly on the authors’ research carried out at their home institutes, and on some specified, significant results existing in the published literature. The methodology to study a given evolution equation is to seek the waves of permanent form, to test whether it possesses any symmetry properties, and whether it is stable and solitonic in nature. Students of physics, applied mathematics, and engineering are usually exposed to various branches of nonlinear mechanics, especially to the soliton theory. The soliton is regarded as an entity, a quasi-particle, which conserves its character and interacts with the surroundings and other solitons as a particle. It is related to a strange phenomenon, which consists in the propagation of certain waves without attenuation in dissipative media. This phenomenon has been known for about 200 years (it was described, for example, by the Joule Verne‘s novel Les histoires de Jean Marie Cabidoulin, éd. Hetzel), but its detailed quantitative descript
出版日期Book 2005
關(guān)鍵詞Cantor; Oscillation; Pendulum; Vibration; equation; mechanics; soliton; statics
版次1
doihttps://doi.org/10.1007/1-4020-2577-7
isbn_softcover978-90-481-6684-8
isbn_ebook978-1-4020-2577-8Series ISSN 0168-1222 Series E-ISSN 2365-6425
issn_series 0168-1222
copyrightSpringer Science+Business Media B.V. 2005
The information of publication is updating

書目名稱Introduction to Soliton Theory: Applications to Mechanics影響因子(影響力)




書目名稱Introduction to Soliton Theory: Applications to Mechanics影響因子(影響力)學(xué)科排名




書目名稱Introduction to Soliton Theory: Applications to Mechanics網(wǎng)絡(luò)公開度




書目名稱Introduction to Soliton Theory: Applications to Mechanics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Introduction to Soliton Theory: Applications to Mechanics被引頻次




書目名稱Introduction to Soliton Theory: Applications to Mechanics被引頻次學(xué)科排名




書目名稱Introduction to Soliton Theory: Applications to Mechanics年度引用




書目名稱Introduction to Soliton Theory: Applications to Mechanics年度引用學(xué)科排名




書目名稱Introduction to Soliton Theory: Applications to Mechanics讀者反饋




書目名稱Introduction to Soliton Theory: Applications to Mechanics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:46:44 | 只看該作者
0168-1222 200 years (it was described, for example, by the Joule Verne‘s novel Les histoires de Jean Marie Cabidoulin, éd. Hetzel), but its detailed quantitative descript978-90-481-6684-8978-1-4020-2577-8Series ISSN 0168-1222 Series E-ISSN 2365-6425
板凳
發(fā)表于 2025-3-22 03:16:45 | 只看該作者
地板
發(fā)表于 2025-3-22 05:09:37 | 只看該作者
5#
發(fā)表于 2025-3-22 11:54:21 | 只看該作者
6#
發(fā)表于 2025-3-22 14:19:22 | 只看該作者
7#
發(fā)表于 2025-3-22 17:47:57 | 只看該作者
https://doi.org/10.1007/1-4020-2577-7Cantor; Oscillation; Pendulum; Vibration; equation; mechanics; soliton; statics
8#
發(fā)表于 2025-3-22 23:13:30 | 只看該作者
9#
發(fā)表于 2025-3-23 03:48:05 | 只看該作者
978-90-481-6684-8Springer Science+Business Media B.V. 2005
10#
發(fā)表于 2025-3-23 07:06:26 | 只看該作者
Introduction to Soliton Theory: Applications to Mechanics978-1-4020-2577-8Series ISSN 0168-1222 Series E-ISSN 2365-6425
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 19:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
顺平县| 博爱县| 玉田县| 松江区| 灵武市| 襄樊市| 聂拉木县| 满洲里市| 安多县| 莱西市| 公主岭市| 尤溪县| 张家口市| 长治市| 攀枝花市| 东阿县| 大连市| 武功县| 鄂州市| 桑日县| 张家港市| 临汾市| 福贡县| 古交市| 广丰县| 大港区| 赣州市| 宜宾县| 湟中县| 永嘉县| 岫岩| 容城县| 婺源县| 天门市| 香港 | 墨江| 平武县| 克拉玛依市| 吉木萨尔县| 文安县| 博罗县|