找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Soergel Bimodules; Ben Elias,Shotaro Makisumi,Geordie Williamson Book 2020 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
樓主: Cataplexy
11#
發(fā)表于 2025-3-23 13:39:52 | 只看該作者
12#
發(fā)表于 2025-3-23 16:44:23 | 只看該作者
Category , and the Kazhdan–Lusztig Conjectures these conjectures are meant to solve. After meandering through connections with the flag variety, we consider Soergel’s proof of these conjectures, where Soergel bimodules played their first major role.
13#
發(fā)表于 2025-3-23 21:00:25 | 只看該作者
14#
發(fā)表于 2025-3-23 22:25:20 | 只看該作者
Ben Elias,Shotaro Makisumi,Geordie WilliamsonUnique comprehensive resource available on Soergel bimodules in book form.First account in book form of diagrammatics for Soergel bimodules, with hundreds of figures.Contains hundreds of exercises and
15#
發(fā)表于 2025-3-24 05:38:13 | 只看該作者
RSME Springer Serieshttp://image.papertrans.cn/i/image/474180.jpg
16#
發(fā)表于 2025-3-24 06:33:18 | 只看該作者
17#
發(fā)表于 2025-3-24 12:49:40 | 只看該作者
How to Draw Monoidal Categories, we are also able to draw morphisms in monoidal categories. With these diagrams in hand, we then define the Temperley–Lieb category. In subsequent chapters we will use string diagrams to understand the morphisms in the monoidal category of Soergel bimodules.
18#
發(fā)表于 2025-3-24 15:37:07 | 只看該作者
2509-8888 with hundreds of figures.Contains hundreds of exercises and.This book provides a comprehensive introduction to Soergel bimodules. First introduced by Wolfgang Soergel in the early 1990s, they have since become a powerful tool in geometric representation theory. On the one hand, these bimodules are
19#
發(fā)表于 2025-3-24 22:06:44 | 只看該作者
20#
發(fā)表于 2025-3-25 00:03:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 22:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台北市| 广宗县| 偃师市| 六枝特区| 彰武县| 繁昌县| 民和| 巴彦淖尔市| 通渭县| 荆州市| 栖霞市| 杭锦后旗| 青铜峡市| 尉氏县| 西贡区| 吉林市| 宣汉县| 邵阳市| 莫力| 土默特左旗| 卫辉市| 棋牌| 浮山县| 衡东县| 营山县| 涿州市| 临江市| 南乐县| 乳山市| 久治县| 游戏| 寿阳县| 鹿泉市| 丽水市| 南部县| 罗江县| 米泉市| 秦皇岛市| 望江县| 电白县| 宾川县|