找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Smooth Manifolds; John M. Lee Textbook 2012Latest edition Springer Science+Business Media New York 2012 Frobenius theorem.

[復(fù)制鏈接]
樓主: 游牧
21#
發(fā)表于 2025-3-25 05:44:53 | 只看該作者
Vector Bundles,n go on to discuss local and global sections of vector bundles (which correspond to vector fields in the case of the tangent bundle). At the end of the chapter, we discuss the natural maps between bundles, called ., and subsets of vector bundles that are themselves vector bundles, called ..
22#
發(fā)表于 2025-3-25 09:14:34 | 只看該作者
Riemannian Metrics,fter defining Riemannian metrics and the main constructions associated with them, we show how submanifolds of Riemannian manifolds inherit induced Riemannian metrics. Then we show how a Riemannian metric leads to a distance function, which allows us to consider connected Riemannian manifolds as metric spaces.
23#
發(fā)表于 2025-3-25 12:40:41 | 只看該作者
24#
發(fā)表于 2025-3-25 17:58:08 | 只看該作者
Vector Fields,t under left multiplication is closed under Lie brackets, and thus forms an algebraic object naturally associated with the group, called the .. We show how Lie group homomorphisms induce homomorphisms of their Lie algebras, from which it follows that isomorphic Lie groups have isomorphic Lie algebras.
25#
發(fā)表于 2025-3-25 22:25:26 | 只看該作者
The de Rham Theorem,hey can be computed by restricting attention only to smooth simplices. In the final section of the chapter, we prove the de Rham theorem by showing that integration of differential forms over smooth simplices induces isomorphisms between the de Rham groups and the singular cohomology groups.
26#
發(fā)表于 2025-3-26 00:25:08 | 只看該作者
0072-5285 s, the rank theorem and the fundamental theorem on flows, mu.This book is an introductory graduate-level textbook on the theory of smooth manifolds. Its goal is to familiarize students with the tools they will need in order to use manifolds in mathematical or scientific research--- smooth structures
27#
發(fā)表于 2025-3-26 04:35:54 | 只看該作者
28#
發(fā)表于 2025-3-26 10:03:20 | 只看該作者
John M. Leeplines, the proposed encyclopedia will have a wide audience including graduate students, researchers and different levels of scientists in biomedicine, cellular and molecular biology, bioengineering, physiological and biochemistry, and pharmacology across both academia and industry.
29#
發(fā)表于 2025-3-26 16:16:55 | 只看該作者
30#
發(fā)表于 2025-3-26 20:21:54 | 只看該作者
John M. Leeplines, the proposed encyclopedia will have a wide audience including graduate students, researchers and different levels of scientists in biomedicine, cellular and molecular biology, bioengineering, physiological and biochemistry, and pharmacology across both academia and industry.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 20:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
敖汉旗| 永丰县| 古丈县| 阿尔山市| 益阳市| 正安县| 临潭县| 营山县| 缙云县| 藁城市| 康保县| 普兰店市| 铜川市| 田阳县| 万山特区| 分宜县| 沁阳市| 崇礼县| 晴隆县| 浦江县| 军事| 台东县| 太保市| 巴中市| 宝兴县| 怀安县| 蓝山县| 洪洞县| 东光县| 潜山县| 博白县| 正宁县| 曲靖市| 仙桃市| 大埔区| 法库县| 顺平县| 酒泉市| 临漳县| 内江市| 巴彦淖尔市|