找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Semi-Supervised Learning; Xiaojin Zhu,Andrew B. Goldberg Book 2009 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
查看: 40192|回復(fù): 38
樓主
發(fā)表于 2025-3-21 19:25:09 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Introduction to Semi-Supervised Learning
編輯Xiaojin Zhu,Andrew B. Goldberg
視頻videohttp://file.papertrans.cn/475/474161/474161.mp4
叢書名稱Synthesis Lectures on Artificial Intelligence and Machine Learning
圖書封面Titlebook: Introduction to Semi-Supervised Learning;  Xiaojin Zhu,Andrew B. Goldberg Book 2009 The Editor(s) (if applicable) and The Author(s), under
描述Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervi
出版日期Book 2009
版次1
doihttps://doi.org/10.1007/978-3-031-01548-9
isbn_softcover978-3-031-00420-9
isbn_ebook978-3-031-01548-9Series ISSN 1939-4608 Series E-ISSN 1939-4616
issn_series 1939-4608
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Introduction to Semi-Supervised Learning影響因子(影響力)




書目名稱Introduction to Semi-Supervised Learning影響因子(影響力)學(xué)科排名




書目名稱Introduction to Semi-Supervised Learning網(wǎng)絡(luò)公開度




書目名稱Introduction to Semi-Supervised Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Introduction to Semi-Supervised Learning被引頻次




書目名稱Introduction to Semi-Supervised Learning被引頻次學(xué)科排名




書目名稱Introduction to Semi-Supervised Learning年度引用




書目名稱Introduction to Semi-Supervised Learning年度引用學(xué)科排名




書目名稱Introduction to Semi-Supervised Learning讀者反饋




書目名稱Introduction to Semi-Supervised Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:28:41 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:55:16 | 只看該作者
Synthesis Lectures on Artificial Intelligence and Machine Learninghttp://image.papertrans.cn/i/image/474161.jpg
地板
發(fā)表于 2025-3-22 06:12:43 | 只看該作者
Mixture Models and EM,ributed, we may decompose the mixture into individual classes. This is the idea behind mixture models. In this chapter, we formalize the idea of mixture models for semi-supervised learning. First we review some concepts in probabilistic modeling. Readers familiar with machine learning can skip to Section 3.2.
5#
發(fā)表于 2025-3-22 11:16:30 | 只看該作者
6#
發(fā)表于 2025-3-22 16:41:17 | 只看該作者
7#
發(fā)表于 2025-3-22 20:49:28 | 只看該作者
8#
發(fā)表于 2025-3-22 23:08:39 | 只看該作者
Introduction to Semi-Supervised Learning978-3-031-01548-9Series ISSN 1939-4608 Series E-ISSN 1939-4616
9#
發(fā)表于 2025-3-23 02:57:37 | 只看該作者
10#
發(fā)表于 2025-3-23 06:59:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 15:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
钦州市| 临桂县| 双柏县| 宜昌市| 横峰县| 壶关县| 大同县| 红河县| 简阳市| 永新县| 石柱| 庄浪县| 郧西县| 太谷县| 绥江县| 禹州市| 沁水县| 南城县| 本溪| 马山县| 日喀则市| 阳山县| 保亭| 翼城县| 大姚县| 富源县| 石河子市| 兴业县| 剑河县| 内丘县| 龙门县| 井研县| 克拉玛依市| 太仓市| 清远市| 惠州市| 南召县| 英德市| 福安市| 沙坪坝区| 车险|