找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Ring Theory; P. M. Cohn Textbook 2000 P.M.Cohn.FRS 2000 Group theory.SUMS.Vector space.algebra.ring theory

[復(fù)制鏈接]
查看: 13042|回復(fù): 38
樓主
發(fā)表于 2025-3-21 17:23:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Introduction to Ring Theory
編輯P. M. Cohn
視頻videohttp://file.papertrans.cn/475/474137/474137.mp4
概述Paul Cohn is a well-known expositor and expert in the field.This book follows on from the SUMS book "Groups, Rings and Fields" by David Wallace.Includes supplementary material:
叢書名稱Springer Undergraduate Mathematics Series
圖書封面Titlebook: Introduction to Ring Theory;  P. M. Cohn Textbook 2000 P.M.Cohn.FRS 2000 Group theory.SUMS.Vector space.algebra.ring theory
描述Most parts of algebra have undergone great changes and advances in recent years, perhaps none more so than ring theory. In this volume, Paul Cohn provides a clear and structured introduction to the subject..After a chapter on the definition of rings and modules there are brief accounts of Artinian rings, commutative Noetherian rings and ring constructions, such as the direct product. Tensor product and rings of fractions, followed by a description of free rings. The reader is assumed to have a basic understanding of set theory, group theory and vector spaces. Over two hundred carefully selected exercises are included, most with outline solutions.
出版日期Textbook 2000
關(guān)鍵詞Group theory; SUMS; Vector space; algebra; ring theory
版次1
doihttps://doi.org/10.1007/978-1-4471-0475-9
isbn_softcover978-1-85233-206-8
isbn_ebook978-1-4471-0475-9Series ISSN 1615-2085 Series E-ISSN 2197-4144
issn_series 1615-2085
copyrightP.M.Cohn.FRS 2000
The information of publication is updating

書目名稱Introduction to Ring Theory影響因子(影響力)




書目名稱Introduction to Ring Theory影響因子(影響力)學(xué)科排名




書目名稱Introduction to Ring Theory網(wǎng)絡(luò)公開度




書目名稱Introduction to Ring Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Introduction to Ring Theory被引頻次




書目名稱Introduction to Ring Theory被引頻次學(xué)科排名




書目名稱Introduction to Ring Theory年度引用




書目名稱Introduction to Ring Theory年度引用學(xué)科排名




書目名稱Introduction to Ring Theory讀者反饋




書目名稱Introduction to Ring Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:18:13 | 只看該作者
Introduction to Ring Theory978-1-4471-0475-9Series ISSN 1615-2085 Series E-ISSN 2197-4144
板凳
發(fā)表于 2025-3-22 01:08:08 | 只看該作者
Noetherian Rings,Throughout mathematics there are many examples of Noetherian rings, starting with the integers, and in this chapter we shall describe some of the most important classes, polynomial rings and rings of algebraic integers, as well as some of their properties, the Euclidean algorithm and unique factorization.
地板
發(fā)表于 2025-3-22 08:21:03 | 只看該作者
5#
發(fā)表于 2025-3-22 11:40:15 | 只看該作者
Linear Algebras and Artinian Rings,pendent interest. It is usually subsumed under the topic of Artinian rings, since many of the proofs carry over to this class. This chapter brings the main results of the theory, the Wedderburn theorems, and explains the role of the radical, and as an application, includes a brief introduction to group representations.
6#
發(fā)表于 2025-3-22 16:24:20 | 只看該作者
7#
發(fā)表于 2025-3-22 19:24:58 | 只看該作者
General Rings,ects of the general theory which will help the reader to understand the basic concepts. Their inclusion is justified by the fact that they are usually only found in specialist accounts but do not require extensive background knowledge.
8#
發(fā)表于 2025-3-22 23:57:41 | 只看該作者
P. M. CohnPaul Cohn is a well-known expositor and expert in the field.This book follows on from the SUMS book "Groups, Rings and Fields" by David Wallace.Includes supplementary material:
9#
發(fā)表于 2025-3-23 01:43:53 | 只看該作者
Springer Undergraduate Mathematics Serieshttp://image.papertrans.cn/i/image/474137.jpg
10#
發(fā)表于 2025-3-23 05:43:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-4 21:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
英吉沙县| 金沙县| 且末县| 陵水| 常山县| 云阳县| 丰都县| 宜兰市| 伊通| 肥城市| 察雅县| 上蔡县| 凤凰县| 临邑县| 喀喇沁旗| 沙坪坝区| 黑水县| 澄迈县| 龙游县| 云和县| 从江县| 锡林浩特市| 巨鹿县| 湘潭县| 关岭| 明星| 海安县| 峡江县| 吴川市| 博湖县| 绥德县| 英吉沙县| 乌鲁木齐市| 曲靖市| 丰原市| 全椒县| 乐陵市| 潼南县| 平江县| 新竹市| 连山|