找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Quantum Groups; Teo Banica Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Sprin

[復(fù)制鏈接]
樓主: Clinton
31#
發(fā)表于 2025-3-26 23:36:23 | 只看該作者
Teo Banicach.Covers theories, key terms, useful definitions and importEvolutionary psychology is a hybrid discipline that draws insights from modern evolutionary theory, biology, cognitive psychology, anthropology, economics, computer science, and paleoarchaeology. The discipline rests on a foundation of core
32#
發(fā)表于 2025-3-27 03:37:06 | 只看該作者
Teo BanicaFirst comprehensive treatment of quantum groups in the sense of Woronowicz.Contains exercises with comments to help the reader deepen their knowledge of the subject.Includes a detailed discussion of t
33#
發(fā)表于 2025-3-27 05:55:53 | 只看該作者
http://image.papertrans.cn/i/image/474100.jpg
34#
發(fā)表于 2025-3-27 11:10:53 | 只看該作者
https://doi.org/10.1007/978-3-031-23817-8Woronowicz quantum groups; Free quantum groups; Free orthogonal quantum groups; Unitary quantum groups;
35#
發(fā)表于 2025-3-27 17:29:22 | 只看該作者
36#
發(fā)表于 2025-3-27 20:11:41 | 只看該作者
37#
發(fā)表于 2025-3-28 00:43:55 | 只看該作者
Representation TheoryIn order to gain some more advanced insight into the structure of the compact quantum groups, we can use representation theory.
38#
發(fā)表于 2025-3-28 02:23:01 | 只看該作者
39#
發(fā)表于 2025-3-28 09:27:25 | 只看該作者
Free RotationsLet us begin with a summary of the Brauer type results established in the previous chapter.
40#
發(fā)表于 2025-3-28 11:03:44 | 只看該作者
Quantum PermutationsThere is quite some work to be done here, but everything is quite routine. As an alternative approach, we will discuss later in this book a generalization of this, regarding the compound Poisson and compound free Poisson limits, so the problem is to go there, and to work out in detail the particular case of the Poisson and free Poisson limits.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 17:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新晃| 太白县| 靖江市| 舟曲县| 丹江口市| 贡山| 电白县| 瑞昌市| 宣城市| 珲春市| 军事| 呈贡县| 城口县| 丰都县| 文成县| 时尚| 兴文县| 原平市| 洞头县| 错那县| 信阳市| 庄河市| 广河县| 房产| 新昌县| 寻乌县| 嘉鱼县| 贡山| 石河子市| 兰考县| 巴青县| 万荣县| 秀山| 达孜县| 宣威市| 南充市| 贵州省| 江永县| 佛山市| 桂平市| 清镇市|