找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Python in Earth Science Data Analysis; From Descriptive Sta Maurizio Petrelli Textbook 2021 The Editor(s) (if applicable) a

[復(fù)制鏈接]
樓主: 瘦削
31#
發(fā)表于 2025-3-27 00:36:03 | 只看該作者
Graphical Visualization of a Geological Data SetChapter 4 deals with the visualization of a geological data set using Python. It introduces the reader to the visualization of univariate data using histograms and cumulative distribution functions. Then, it begins showing how to prepare a publication-ready diagram. The chapter ends with a first attempt at visualizing multivariate data.
32#
發(fā)表于 2025-3-27 01:18:51 | 只看該作者
Descriptive Statistics 1: Univariate AnalysisMastering descriptive statistics is mandatory for a geologist. Chapter 5 shows how to describe a geological data set using Python programming, starting with basic metrics such as the location, dispersion, and degree of symmetry of a univariate data set. It then shows how to perform descriptive statistics in pandas and introduces box plot diagrams.
33#
發(fā)表于 2025-3-27 08:23:57 | 只看該作者
Error AnalysisChapter 10 is about errors and error propagation. It defines precision, accuracy, standard error, and confidence intervals. Then it demonstrates how to report uncertainties in binary diagrams. Finally, it shows two approaches to propagate the uncertainties: the linearized and Monte Carlo methods.
34#
發(fā)表于 2025-3-27 11:06:47 | 只看該作者
Introduction to Robust StatisticsChapter 11 introduces robust statistics. It presents an approach to determine whether or not a sample follows a normal distribution. Chapter 11 continues defining robust approaches for the estimation of the location and the scale of a sample. It concludes by discussing the role of robust statistics in geochemistry.
35#
發(fā)表于 2025-3-27 16:22:21 | 只看該作者
Machine LearningChapter 12 introduces the reader to the application of machine learning techniques in geology. It provides some basic concepts of machine learning and their implementation in Python, and guides the reader through a geological case study that utilizes machine learning.
36#
發(fā)表于 2025-3-27 18:48:37 | 只看該作者
Python Essentials for a Geologistdescribes how to start working with Python scripts in the Spyder Integrated Development Environment (IDE). It also explains how to perform conditional statements and loops, and how to define a function and perform basic mathematical operations.
37#
發(fā)表于 2025-3-28 00:07:09 | 只看該作者
38#
發(fā)表于 2025-3-28 02:13:18 | 只看該作者
39#
發(fā)表于 2025-3-28 07:17:28 | 只看該作者
Probability Density Functions and Their Use in Geologysity functions, and introduces meaningful probability density functions in geology. Examples are the normal and log-normal distributions. Chapter 9 ends by showing how to perform a probability density estimation.
40#
發(fā)表于 2025-3-28 12:43:11 | 只看該作者
https://doi.org/10.1007/978-3-030-78055-5Modelling Geological Data; Earth Science Python Programming; Python Learning for Geologists; Machine Le
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
溧水县| 蓬莱市| 文登市| 舞钢市| 长葛市| 金堂县| 大同市| 治县。| 海城市| 碌曲县| 股票| 澄迈县| 嘉荫县| 安岳县| 台安县| 巨野县| 永年县| 汝南县| 伽师县| 信丰县| 杂多县| 鸡西市| 新乐市| 泗水县| 冷水江市| 肃宁县| 大田县| 海晏县| 武安市| 察哈| 同江市| 安图县| 伊川县| 罗山县| 彭山县| 罗平县| 江川县| 宕昌县| 凌海市| 无为县| 长宁县|