找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Lipschitz Geometry of Singularities; Lecture Notes of the Walter Neumann,Anne Pichon Book 2020 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: 歸納
11#
發(fā)表于 2025-3-23 11:24:42 | 只看該作者
12#
發(fā)表于 2025-3-23 17:18:43 | 只看該作者
13#
發(fā)表于 2025-3-23 21:31:44 | 只看該作者
,Geometric Viewpoint of Milnor’s Fibration Theorem,s, emphasizing the ideas of differential topology involved. We also describe the monodromy of the Milnor fibration of a complex analytic function of two variables with isolated singularity, as a quasi-periodic diffeomorphism using a resolution of the singularity.
14#
發(fā)表于 2025-3-24 01:33:48 | 只看該作者
3-Manifolds and Links of Singularities,. discuss Lipschitz geometry, but it provides many examples of isolated complex surface singularities on which one can work to find their Lipschitz geometry (e.g., thick-thin decompositions and inner and/or outer bilipschitz classifications).
15#
發(fā)表于 2025-3-24 04:40:55 | 只看該作者
16#
發(fā)表于 2025-3-24 07:28:21 | 只看該作者
Basics on Lipschitz Geometry,c sets and mappings and basic notions of Lipschitz geometry. The course then focuses on the real setting, presenting the outer Lipschitz classification of semialgebraic curves, the inner classification of semialgebraic surfaces, the bi- Lipschitz invariance of the tangent cone, and ending with a pre
17#
發(fā)表于 2025-3-24 12:13:06 | 只看該作者
18#
發(fā)表于 2025-3-24 17:24:32 | 只看該作者
An Introduction to Lipschitz Geometry of Complex Singularities,plete classification of Lipschitz geometry of complex plane curves singularities and in particular, it introduces the so-called bubble trick, which is a key tool to study Lipschitz geometry of germs. It describes also the thick-thin decomposition of a normal complex surface singularity and built two
19#
發(fā)表于 2025-3-24 19:32:27 | 只看該作者
20#
發(fā)表于 2025-3-25 01:01:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 06:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
图木舒克市| 兴山县| 洱源县| 玛曲县| 溧阳市| 成都市| 六枝特区| 武乡县| 阿拉尔市| 韶山市| 昌平区| 长丰县| 温宿县| 密山市| 城口县| 安庆市| 龙口市| 三穗县| 峨山| 辉南县| 郧西县| 沁水县| 三门县| 疏勒县| 广宗县| 东乡县| 茂名市| 天柱县| 简阳市| 淳化县| 乌拉特后旗| 新丰县| 岳阳县| 盐亭县| 晴隆县| 潞西市| 垫江县| 靖西县| 汉川市| 临沂市| 登封市|