找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Infinity-Categories; Markus Land Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to

[復(fù)制鏈接]
查看: 35942|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:30:33 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Introduction to Infinity-Categories
編輯Markus Land
視頻videohttp://file.papertrans.cn/474/473775/473775.mp4
概述Presents a high-level topic in an accessible style.Includes exercises.Leads the reader from the theory basics to more advanced results
叢書名稱Compact Textbooks in Mathematics
圖書封面Titlebook: Introduction to Infinity-Categories;  Markus Land Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to
描述This textbook is an introduction to the theory of infinity-categories, a tool used in many aspects of modern pure mathematics. It treats the basics of the theory and supplies all the necessary details while leading the reader along a streamlined path from the basic definitions to more advanced results such as the very important adjoint functor theorems. .The book is based on lectures given by the author on the topic. While the material itself is well-known to experts, the presentation of the material is, in parts, novel and accessible to non-experts. Exercises complement this textbook that can be used both in a classroom setting at the graduate level and as an introductory text for the interested reader.
出版日期Textbook 2021
關(guān)鍵詞infinity-categories; functors; limits and colimits; adjunctions; adjoint functor theorems
版次1
doihttps://doi.org/10.1007/978-3-030-61524-6
isbn_softcover978-3-030-61523-9
isbn_ebook978-3-030-61524-6Series ISSN 2296-4568 Series E-ISSN 2296-455X
issn_series 2296-4568
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Introduction to Infinity-Categories影響因子(影響力)




書目名稱Introduction to Infinity-Categories影響因子(影響力)學(xué)科排名




書目名稱Introduction to Infinity-Categories網(wǎng)絡(luò)公開度




書目名稱Introduction to Infinity-Categories網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Introduction to Infinity-Categories被引頻次




書目名稱Introduction to Infinity-Categories被引頻次學(xué)科排名




書目名稱Introduction to Infinity-Categories年度引用




書目名稱Introduction to Infinity-Categories年度引用學(xué)科排名




書目名稱Introduction to Infinity-Categories讀者反饋




書目名稱Introduction to Infinity-Categories讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:11:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:50:29 | 只看該作者
(Co)Cartesian Fibrations and the Construction of Functors,inner fibration between simplicial sets. (Co)cartesian fibrations are natural generalizations of (left) right fibrations, and they will be a key player in the straightening-unstraightening equivalence (which we discuss to some extend only in this book).
地板
發(fā)表于 2025-3-22 05:56:43 | 只看該作者
Adjunctions and Adjoint Functor Theorems,ly be described by choosing a binatural transformation of bivariant mapping-space functors. We will give several sufficient criteria for a fixed functor . to admit an adjoint, similarly as in ordinary category theory, and discuss some examples. Furthermore, we will prove that (co)limits (if they exi
5#
發(fā)表于 2025-3-22 09:47:56 | 只看該作者
ts of the contact, and observations and evaluations made during these meetings, were read widely among the public and were used by philosophers, naturalists and eventually scientists to advance theories about the nature of humanity, society and ‘civilisation’. Yet in the moment, these encounters wer
6#
發(fā)表于 2025-3-22 13:55:17 | 只看該作者
7#
發(fā)表于 2025-3-22 17:31:24 | 只看該作者
8#
發(fā)表于 2025-3-22 21:30:28 | 只看該作者
9#
發(fā)表于 2025-3-23 01:50:08 | 只看該作者
10#
發(fā)表于 2025-3-23 07:08:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 10:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
襄樊市| 闻喜县| 江安县| 靖州| 镇平县| 凭祥市| 安多县| 芜湖县| 大埔县| 南城县| 蒙阴县| 建平县| 辽阳县| 泸州市| 梨树县| 玛曲县| 沂水县| 富川| 茌平县| 福泉市| 东港市| 米林县| 高邮市| 梁河县| 沿河| 乳山市| 东光县| 客服| 平江县| 永平县| 深圳市| 盘山县| 赞皇县| 平和县| 芦山县| 大石桥市| 双流县| 上蔡县| 大新县| 南皮县| 含山县|