找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to HPC with MPI for Data Science; Frank Nielsen Textbook 2016 Springer International Publishing Switzerland 2016 Data Science

[復(fù)制鏈接]
查看: 7937|回復(fù): 47
樓主
發(fā)表于 2025-3-21 16:24:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Introduction to HPC with MPI for Data Science
編輯Frank Nielsen
視頻videohttp://file.papertrans.cn/474/473755/473755.mp4
概述Contains numerous exercises and a test exam.Features material that has been used and tested with students.Provides additional material, including source C++/MPI codes and slides for each chapter, on a
叢書名稱Undergraduate Topics in Computer Science
圖書封面Titlebook: Introduction to HPC with MPI for Data Science;  Frank Nielsen Textbook 2016 Springer International Publishing Switzerland 2016 Data Science
描述.This gentle introduction to High Performance Computing (HPC) for Data Science using the Message Passing Interface (MPI) standard has been designed as a first course for undergraduates on parallel programming on distributed memory models, and requires only basic programming notions..Divided into two parts the first part covers high performance computing using C++ with the Message Passing Interface (MPI) standard followed by a second part providing high-performance data analytics on computer clusters..In the first part, the fundamental notions of blocking versus non-blocking point-to-point communications, global communications (like broadcast or scatter) and collaborative computations (reduce), with Amdalh and Gustafson speed-up laws are described before addressing parallel sorting and parallel linear algebra on computer clusters. The common ring, torus and hypercube topologies of clusters are then explained and global communication procedures on these topologies are studied. This first part closes with the MapReduce (MR) model of computation well-suited to processing big data using the MPI framework..In the second part, the book focuses on high-performance data analytics. Flat and
出版日期Textbook 2016
關(guān)鍵詞Data Science; Exploratory analytics and knowledge discovery; High Performance Computing (HPC); Large-sc
版次1
doihttps://doi.org/10.1007/978-3-319-21903-5
isbn_softcover978-3-319-21902-8
isbn_ebook978-3-319-21903-5Series ISSN 1863-7310 Series E-ISSN 2197-1781
issn_series 1863-7310
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書目名稱Introduction to HPC with MPI for Data Science影響因子(影響力)




書目名稱Introduction to HPC with MPI for Data Science影響因子(影響力)學(xué)科排名




書目名稱Introduction to HPC with MPI for Data Science網(wǎng)絡(luò)公開度




書目名稱Introduction to HPC with MPI for Data Science網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Introduction to HPC with MPI for Data Science被引頻次




書目名稱Introduction to HPC with MPI for Data Science被引頻次學(xué)科排名




書目名稱Introduction to HPC with MPI for Data Science年度引用




書目名稱Introduction to HPC with MPI for Data Science年度引用學(xué)科排名




書目名稱Introduction to HPC with MPI for Data Science讀者反饋




書目名稱Introduction to HPC with MPI for Data Science讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:04:08 | 只看該作者
Textbook 2016s are then explained and global communication procedures on these topologies are studied. This first part closes with the MapReduce (MR) model of computation well-suited to processing big data using the MPI framework..In the second part, the book focuses on high-performance data analytics. Flat and
板凳
發(fā)表于 2025-3-22 03:02:55 | 只看該作者
A Glance at High Performance Computing (HPC)mming languages and application programming interfaces (APIs), the dedicated software tools, the international specialized conferences (ACM/IEEE Super-Computing, or SC for short), etc. Loosely speaking, HPC is both the scientific and technical fields of study of “Super-Computers” (SCs).
地板
發(fā)表于 2025-3-22 07:18:23 | 只看該作者
Introduction to MPI: The Message Passing Interfacetions, procedures, data-types, constants, etc.) with the precise semantic of communication protocols and global calculation routines, among others. Thus a parallel program using distributed memory can be implemented using various implementations of the MPI interface provided by several vendors (like
5#
發(fā)表于 2025-3-22 12:25:40 | 只看該作者
6#
發(fā)表于 2025-3-22 14:14:56 | 只看該作者
7#
發(fā)表于 2025-3-22 20:20:03 | 只看該作者
8#
發(fā)表于 2025-3-22 22:43:34 | 只看該作者
Partition-Based Clustering with ,-Meansle structures (or “patterns”) in those seas of data. Exploratory data analysis is concerned with this challenge of finding such structural information without any prior knowledge: in this case, those techniques that consist in learning from data without prior knowledge are called generically unsuper
9#
發(fā)表于 2025-3-23 01:34:50 | 只看該作者
10#
發(fā)表于 2025-3-23 09:01:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 23:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宾川县| 涡阳县| 安乡县| 额济纳旗| 哈巴河县| 台北市| 聂荣县| 微山县| 黑龙江省| 哈巴河县| 土默特左旗| 南通市| 贵州省| 赞皇县| 蒙阴县| 禄丰县| 喜德县| 诸暨市| 朝阳区| 盈江县| 布拖县| 杭州市| 义乌市| 广宁县| 且末县| 绩溪县| 遂昌县| 南岸区| 长寿区| 如东县| 阿克苏市| 措勤县| 岳池县| 恭城| 蚌埠市| 甘谷县| 南昌县| 凤冈县| 新泰市| 永年县| 龙岩市|