找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Cyclotomic Fields; Lawrence C. Washington Textbook 1997Latest edition Springer Science+Business Media New York 1997 Calc.C

[復(fù)制鏈接]
樓主: 叛亂分子
11#
發(fā)表于 2025-3-23 10:07:33 | 只看該作者
,The Kronecker—Weber Theorem,em is usually given as an easy consequence of class field theory. We do this in the Appendix. The main point is that in an abelian extension the splitting of primes is determined by congruence conditions, and we already know that . splits in . if . and only if mod ..
12#
發(fā)表于 2025-3-23 14:42:58 | 只看該作者
13#
發(fā)表于 2025-3-23 19:22:07 | 只看該作者
14#
發(fā)表于 2025-3-23 23:20:06 | 只看該作者
Basic Results,In this chapter we prove some basic results on cyclotomic fields which will lay the groundwork for later chapters. We let ζ . denote a primitive .th root of unity. First we determine the riqng of integers and discriminant of. (ζ .). We start with the prime power case.
15#
發(fā)表于 2025-3-24 04:44:42 | 只看該作者
16#
發(fā)表于 2025-3-24 09:55:29 | 只看該作者
Dirichlet ,-series and Class Number Formulas,In this chapter we review some of the basic facts about .-series. Then their values at negative integers are given in terms of generalized Bernoulli numbers. Finally, we discuss the values at 1 and relations with class numbers.
17#
發(fā)表于 2025-3-24 12:08:50 | 只看該作者
,The Second Case of Fermat’s Last Theorem,In Chapters 1 and 6 we treated the first case of Fermat’s Last Theorem, showing that there are no solutions provided certain conditions are satisfied by the class number.
18#
發(fā)表于 2025-3-24 18:20:31 | 只看該作者
19#
發(fā)表于 2025-3-24 20:05:06 | 只看該作者
20#
發(fā)表于 2025-3-25 02:44:14 | 只看該作者
Introduction to Cyclotomic Fields978-1-4612-1934-7Series ISSN 0072-5285 Series E-ISSN 2197-5612
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 16:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉节县| 辉南县| 广平县| 江门市| 聂拉木县| 苍溪县| 浦县| 灵川县| 云安县| 双峰县| 津南区| 隆昌县| 锡林郭勒盟| 台前县| 盐池县| 贵州省| 自治县| 池州市| 宝清县| 贡嘎县| 乾安县| 景洪市| 句容市| 建水县| 瓮安县| 东乌珠穆沁旗| 抚州市| 海原县| 淳安县| 岐山县| 深泽县| 临高县| 许昌县| 泰和县| 双桥区| 太白县| 竹北市| 长治市| 武义县| 内乡县| 调兵山市|