找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Cutting and Packing Optimization; Problems, Modeling A Guntram Scheithauer Textbook 2018 Springer International Publishing

[復(fù)制鏈接]
樓主: DEIGN
21#
發(fā)表于 2025-3-25 06:17:00 | 只看該作者
Packing of Polygonal Pieces,is frequently of interest. Here we address aspects concerning the mutual position of polygonal pieces and the containment within a polygonal region. Moreover, we discuss the basic principles of heuristic solution approaches.
22#
發(fā)表于 2025-3-25 10:37:58 | 只看該作者
23#
發(fā)表于 2025-3-25 15:30:14 | 只看該作者
24#
發(fā)表于 2025-3-25 16:45:37 | 只看該作者
Introduction to Cutting and Packing Optimization978-3-319-64403-5Series ISSN 0884-8289 Series E-ISSN 2214-7934
25#
發(fā)表于 2025-3-25 19:58:18 | 只看該作者
26#
發(fā)表于 2025-3-26 00:23:41 | 只看該作者
Optimal Guillotine Cutting,Within this chapter we address those two- and higher-dimensional cutting and packing problems where the guillotine cutting condition has to be regarded. That means, given a pattern then the desired products can be obtained by a sequence of guillotine cuts. We will consider knapsack-type problems as well as cutting stock problems.
27#
發(fā)表于 2025-3-26 06:05:35 | 只看該作者
One-Dimensional Bin Packing,to address the problem specific issues more properly..The BPP is known to be NP-hard. For that reason, we will consider, besides exact solution approaches, lower and upper bounds for the optimal value as well as reduction methods and some extensions.
28#
發(fā)表于 2025-3-26 11:56:47 | 只看該作者
29#
發(fā)表于 2025-3-26 15:56:43 | 只看該作者
Quality Restrictions,ralized cutting problem in which the length of the pieces of a desired type is only limited by a minimum and a maximum length, i.e., their length can vary within a given interval. In the second part, we turn to two-dimensional cutting problems with defective or forbidden regions.
30#
發(fā)表于 2025-3-26 18:13:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 10:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汪清县| 忻城县| 利津县| 丰都县| 阳曲县| 红河县| 师宗县| 修武县| 吴川市| 玉山县| 江川县| 宁陵县| 芜湖县| 依安县| 长武县| 雷州市| 微博| 芮城县| 长沙县| 漳浦县| 通州区| 武隆县| 城步| 玛纳斯县| 四子王旗| 肃南| 达州市| 大城县| 双桥区| 宁晋县| 广宗县| 泉州市| 遂宁市| 铁岭县| 重庆市| 朝阳区| 新安县| 东兴市| 兴海县| 濮阳市| 云浮市|