找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Conformal Invariance and Its Applications to Critical Phenomena; P. Christe,M. Henkel Book 1993 Springer-Verlag Berlin Hei

[復(fù)制鏈接]
樓主: 無法生存
11#
發(fā)表于 2025-3-23 13:01:26 | 只看該作者
Modular Invariance, Virasoro algebra for . = 3, one could combine in 9 possible ways the holomorphic and antiholomorphic parts to obtain the primary operators. However, just the 5 found can be realized. A part of the explanation comes from the locality requirement for the correlation functions discussed in chapters 5–
12#
發(fā)表于 2025-3-23 14:25:54 | 只看該作者
Further Developments and Applications,ral examples will serve to illustrate the techniques developed so far and to introduce a few new concepts. Many of the results to be given were obtained by the numerical techniques described in chapter 9 and we shall mainly give a review on existing results. For computational details, we refer to th
13#
發(fā)表于 2025-3-23 21:13:06 | 只看該作者
14#
發(fā)表于 2025-3-24 00:25:11 | 只看該作者
15#
發(fā)表于 2025-3-24 05:32:50 | 只看該作者
Surface Critical Phenomena,e applied to systems with boundaries present. It is impossible to give on just a few pages a full description on the rich field of surface effects and we will only consider some of the problems for which conformal invariance has proved to be useful. For more background on surface critical phenomena,
16#
發(fā)表于 2025-3-24 10:00:33 | 只看該作者
17#
發(fā)表于 2025-3-24 12:44:05 | 只看該作者
18#
發(fā)表于 2025-3-24 15:14:17 | 只看該作者
Finite Size Scaling,efore following the field-theoretic developments further, we shall describe important applications to the study of finite-size effects. Besides being of interest in their own right, these results provide highly efficient computational tools for the practical calculations of central charges and scaling dimensions.
19#
發(fā)表于 2025-3-24 19:46:30 | 只看該作者
20#
發(fā)表于 2025-3-25 01:00:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 06:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潼关县| 屯留县| 浦县| 增城市| 铅山县| 丰都县| 昌乐县| 精河县| 海丰县| 德钦县| 漳浦县| 米泉市| 道孚县| 绍兴市| 芦溪县| 界首市| 安溪县| 海门市| 安仁县| 容城县| 澄江县| 武冈市| 江华| 徐闻县| 烟台市| 平湖市| 梅州市| 鱼台县| 财经| 徐汇区| 江达县| 龙海市| 通渭县| 安庆市| 巩义市| 修水县| 房产| 鸡西市| 荆州市| 留坝县| 呼图壁县|