找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Coding Theory; J. H. Lint Textbook 19922nd edition Springer-Verlag Berlin Heidelberg 1992 code.coding.coding theory.discre

[復(fù)制鏈接]
樓主: Callow
21#
發(fā)表于 2025-3-25 04:42:45 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/i/image/473524.jpg
22#
發(fā)表于 2025-3-25 08:07:43 | 只看該作者
https://doi.org/10.1007/978-3-662-00174-5code; coding; coding theory; discrete mathematics; combinatorics
23#
發(fā)表于 2025-3-25 12:10:12 | 只看該作者
24#
發(fā)表于 2025-3-25 18:32:41 | 只看該作者
Textbook 19922nd editione mathematics-a field that is still growing in importance as the need for mathematicians and computer scientists in industry continues to grow. The body of the book consists of two parts: a rigorous, mathematically oriented first course in coding theory followed by introductions to special topics. T
25#
發(fā)表于 2025-3-25 21:50:17 | 只看該作者
0072-5285 of discrete mathematics-a field that is still growing in importance as the need for mathematicians and computer scientists in industry continues to grow. The body of the book consists of two parts: a rigorous, mathematically oriented first course in coding theory followed by introductions to special
26#
發(fā)表于 2025-3-26 02:01:28 | 只看該作者
Perfect Codes and Uniformly Packed Codes,recting code. The theorem was first proved by S. P. Lloyd (1957) (indeed for . = 2) using analytic methods. Since then it has been generalized by many authors (cf. [44]) but it is still referred to as Lloyd’s theorem. The proof in this section is due to D. M. Cvetkovi? and J. H. van Lint (1977; cf. [17]).
27#
發(fā)表于 2025-3-26 06:51:58 | 只看該作者
Bounds on Codes,.:= (. ? 1)/.. Notation is as in Section 3.1. We assume . has been chosen and then define an (., *, .) code as a code with length . and minimum distance .. We are interested in the maximal number of codewords (i.e. the largest . which can be put in place of the *). An (.) code which is not contained in any (., . + 1, .) code is called ..
28#
發(fā)表于 2025-3-26 11:50:16 | 只看該作者
29#
發(fā)表于 2025-3-26 15:07:24 | 只看該作者
30#
發(fā)表于 2025-3-26 18:51:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 10:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扎鲁特旗| 鄂州市| 惠安县| 隆尧县| 台东市| 海原县| 莱阳市| 方山县| 五原县| 嵩明县| 石柱| 拉萨市| 金阳县| 余江县| 龙井市| 刚察县| 天长市| 肃南| 珲春市| 灵川县| 连云港市| 施甸县| 丰县| 灵宝市| 天柱县| 衡水市| 江西省| 延津县| 航空| 潜山县| 宾阳县| 卢龙县| 无锡市| 濮阳县| 仁怀市| 体育| 彩票| 沿河| 苗栗市| 突泉县| 东丽区|