找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Coding Theory; J. H. Lint Textbook 19821st edition Springer Science+Business Media New York 1982 code.coding.coding theory

[復制鏈接]
查看: 18177|回復: 52
樓主
發(fā)表于 2025-3-21 17:27:36 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Introduction to Coding Theory
編輯J. H. Lint
視頻videohttp://file.papertrans.cn/474/473523/473523.mp4
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Introduction to Coding Theory;  J. H. Lint Textbook 19821st edition Springer Science+Business Media New York 1982 code.coding.coding theory
描述Coding theory is still a young subject. One can safely say that it was born in 1948. It is not surprising that it has not yet become a fixed topic in the curriculum of most universities. On the other hand, it is obvious that discrete mathematics is rapidly growing in importance. The growing need for mathe- maticians and computer scientists in industry will lead to an increase in courses offered in the area of discrete mathematics. One of the most suitable and fascinating is, indeed, coding theory. So, it is not surprising that one more book on this subject now appears. However, a little more justification of the book are necessary. A few years ago it was and a little more history remarked at a meeting on coding theory that there was no book available an introductory course on coding theory (mainly which could be used for for mathematicians but also for students in engineering or computer science). The best known textbooks were either too old, too big, too technical, too much for specialists, etc. The final remark was that my Springer Lecture Notes (# 201) were slightly obsolete and out of print. Without realizing what I was getting into I announced that the statement was not true a
出版日期Textbook 19821st edition
關鍵詞code; coding; coding theory; computer science; discrete mathematics
版次1
doihttps://doi.org/10.1007/978-3-662-07998-0
isbn_ebook978-3-662-07998-0Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 1982
The information of publication is updating

書目名稱Introduction to Coding Theory影響因子(影響力)




書目名稱Introduction to Coding Theory影響因子(影響力)學科排名




書目名稱Introduction to Coding Theory網絡公開度




書目名稱Introduction to Coding Theory網絡公開度學科排名




書目名稱Introduction to Coding Theory被引頻次




書目名稱Introduction to Coding Theory被引頻次學科排名




書目名稱Introduction to Coding Theory年度引用




書目名稱Introduction to Coding Theory年度引用學科排名




書目名稱Introduction to Coding Theory讀者反饋




書目名稱Introduction to Coding Theory讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:45:48 | 只看該作者
Perfect Codes and Uniformly Packed Codes,recting code. The theorem was first proved by S. P. Lloyd (1957) (indeed for . 2) using analytic methods. Since then it has been generalized by many authors (cf. [44]) but it is still referred to as Lloyd’s theorem. The proof in this section is due to D. M. Cvetkovi? and J. H. van Lint (1977; cf. [17]).
板凳
發(fā)表于 2025-3-22 01:19:55 | 只看該作者
地板
發(fā)表于 2025-3-22 04:50:19 | 只看該作者
0072-5285 topic in the curriculum of most universities. On the other hand, it is obvious that discrete mathematics is rapidly growing in importance. The growing need for mathe- maticians and computer scientists in industry will lead to an increase in courses offered in the area of discrete mathematics. One o
5#
發(fā)表于 2025-3-22 11:34:18 | 只看該作者
Linear Codes,mbols .., .., ..,... is coded into an infinite sequence of message symbols. For example, for rate 1/2 one could have .., .., ..,... → .., .., .., ..,..., where ... is a function of ..,.., ...,... For block codes we generalize (2.1.3) to arbitrary alphabets.
6#
發(fā)表于 2025-3-22 14:16:48 | 只看該作者
Bounds on Codes,nce .. We are interested in the maximal number of codewords (i.e. the largest . which can be put in place of the *). An (., ., .) code which is not contained in any (., . + 1, .) code is called maximal.
7#
發(fā)表于 2025-3-22 20:44:34 | 只看該作者
8#
發(fā)表于 2025-3-22 21:48:51 | 只看該作者
9#
發(fā)表于 2025-3-23 03:29:50 | 只看該作者
10#
發(fā)表于 2025-3-23 06:34:00 | 只看該作者
Introduction to Coding Theory978-3-662-07998-0Series ISSN 0072-5285 Series E-ISSN 2197-5612
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-28 00:27
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
武宁县| 响水县| 固原市| 那曲县| 新邵县| 全椒县| 永修县| 鄂温| 昂仁县| 富平县| 万盛区| 韶关市| 灯塔市| 石景山区| 浠水县| 车险| 台山市| 大同市| 保靖县| 道真| 桦川县| 理塘县| 乌鲁木齐县| 阆中市| 抚宁县| 铜山县| 安丘市| 景东| 休宁县| 岑溪市| 和林格尔县| 莱阳市| 昭苏县| 巴楚县| 临颍县| 如皋市| 永城市| 韩城市| 池州市| 墨竹工卡县| 全南县|