找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Cardinal Arithmetic; M. Holz,K. Steffens,E. Weitz Textbook 1999 Springer Basel AG 1999 Addition.Alephs.Arithmetic.Axiom of

[復(fù)制鏈接]
樓主: JADE
21#
發(fā)表于 2025-3-25 04:18:17 | 只看該作者
Modern Birkh?user Classicshttp://image.papertrans.cn/i/image/473500.jpg
22#
發(fā)表于 2025-3-25 10:07:57 | 只看該作者
23#
發(fā)表于 2025-3-25 14:41:57 | 只看該作者
Approximation Sequences,tic methods. Notions such as “model of ZFC” and “absoluteness of a formula” are introduced. For any infinite cardinal number Θ we define the set H(Θ) of those sets which are hereditarily of cardinality less than Θ. We will show that for all regular uncountable cardinals Θ, H(Θ) is a model of all axioms of ZFC except the power set axiom.
24#
發(fā)表于 2025-3-25 17:07:25 | 只看該作者
25#
發(fā)表于 2025-3-26 00:02:04 | 只看該作者
2197-1803 ZFC.Includes supplementary material: This book is an introduction to modern cardinal arithmetic, developed in the frame of the axioms of Zermelo-Fraenkel set theory together with the axiom of choice. It splits into three parts. Part one, which is contained in Chapter 1, describes the classical cardi
26#
發(fā)表于 2025-3-26 03:34:36 | 只看該作者
27#
發(fā)表于 2025-3-26 04:44:58 | 只看該作者
Introduction,erous to the set {. ∈ .: . < 25}, then we say that . has exactly 25 members, and {. ∈ .: . < 25} is a set of comparison for . If . is a set and if . and w are equinumerous, then . will be a set of comparison for ., and . will be called countably infinite or denumerable. A well known example for such a set is . {. ∈ .: . is divisible by 2}.
28#
發(fā)表于 2025-3-26 10:34:36 | 只看該作者
29#
發(fā)表于 2025-3-26 12:54:04 | 只看該作者
Local Properties,and λ ∈ pcf(d). This theorem will also be applied in the proof of a main result of pcf-theory: If a is a progressive interval of regular cardinals, then |pcf(a)| < |a|.. The importance of this result will be demonstrated in Section 8.1.
30#
發(fā)表于 2025-3-26 18:36:14 | 只看該作者
Ordinal Functions,dinals satisfying |a| < min(a), since |a| ≤ |δ|. Shelah defines an operator pcf which assigns to each set a of regular cardinals and each cardinal . a set pcf. (a) of regular cardinals satisfying the following properties for . ≥ 1:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 20:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贵州省| 山阴县| 修文县| 尼木县| 新绛县| 延边| 阳山县| 横山县| 墨脱县| 会东县| 青川县| 东山县| 扬中市| 香港| 白银市| 大兴区| 修文县| 翁牛特旗| 安徽省| 三原县| 蚌埠市| 江油市| 长治市| 宜君县| 东港市| 蓝田县| 恭城| 上饶市| 桑日县| 买车| 郑州市| 博湖县| 南雄市| 新竹市| 淅川县| 洛隆县| 邯郸市| 郑州市| 福清市| 新密市| 肇庆市|