找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Applied Nonlinear Dynamical Systems and Chaos; Stephen Wiggins Textbook 19901st edition Springer Science+Business Media Ne

[復(fù)制鏈接]
查看: 44757|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:07:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Introduction to Applied Nonlinear Dynamical Systems and Chaos
編輯Stephen Wiggins
視頻videohttp://file.papertrans.cn/474/473420/473420.mp4
叢書名稱Texts in Applied Mathematics
圖書封面Titlebook: Introduction to Applied Nonlinear Dynamical Systems and Chaos;  Stephen Wiggins Textbook 19901st edition Springer Science+Business Media Ne
描述Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the clas- sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM) . The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathe- matical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface This textbook was developed from material presented in a year-long, grad- uate-level course in nonlinear dynamics that I tau
出版日期Textbook 19901st edition
關(guān)鍵詞dynamical systems; mathematics; nonlinear dynamics
版次1
doihttps://doi.org/10.1007/978-1-4757-4067-7
isbn_ebook978-1-4757-4067-7Series ISSN 0939-2475 Series E-ISSN 2196-9949
issn_series 0939-2475
copyrightSpringer Science+Business Media New York 1990
The information of publication is updating

書目名稱Introduction to Applied Nonlinear Dynamical Systems and Chaos影響因子(影響力)




書目名稱Introduction to Applied Nonlinear Dynamical Systems and Chaos影響因子(影響力)學(xué)科排名




書目名稱Introduction to Applied Nonlinear Dynamical Systems and Chaos網(wǎng)絡(luò)公開度




書目名稱Introduction to Applied Nonlinear Dynamical Systems and Chaos網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Introduction to Applied Nonlinear Dynamical Systems and Chaos被引頻次




書目名稱Introduction to Applied Nonlinear Dynamical Systems and Chaos被引頻次學(xué)科排名




書目名稱Introduction to Applied Nonlinear Dynamical Systems and Chaos年度引用




書目名稱Introduction to Applied Nonlinear Dynamical Systems and Chaos年度引用學(xué)科排名




書目名稱Introduction to Applied Nonlinear Dynamical Systems and Chaos讀者反饋




書目名稱Introduction to Applied Nonlinear Dynamical Systems and Chaos讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:32:14 | 只看該作者
Stephen Wigginser, Streuungsma?e sowie die (empirische) Verteilungsfunktion abgeleitet. Wie diese Me?werte im einzelnen gewonnen wurden, spielte dabei keine Rolle. Wichtig ist nur, da? es sich um Me?werte desselben Merkmals handelt. Bei der Begriffsbildung f?llt sofort die Analogie zur Theorie der Zufallsvariablen
板凳
發(fā)表于 2025-3-22 04:05:51 | 只看該作者
地板
發(fā)表于 2025-3-22 07:35:52 | 只看該作者
5#
發(fā)表于 2025-3-22 11:49:14 | 只看該作者
6#
發(fā)表于 2025-3-22 16:27:17 | 只看該作者
7#
發(fā)表于 2025-3-22 18:40:13 | 只看該作者
ommen - mit Rücksicht auf Sicherheit und Wirt- 8chaftlichkeit zu schaffen; ihr Ziel liegt darin, diese Abmessungen mit hinreichender Genauigkeit im voraus, d. h. vor der eigentlichen Her- stellung festzulegen (Dimensionierung). Die Abmessungen bilden den Ausgangspunkt für die darauf folgende technis
8#
發(fā)表于 2025-3-22 23:33:38 | 只看該作者
Introduction,ectively. The overdot in (0.1) means “.” and we view the variables . as parameters. In the study of dynamical systems the dependent variable is often referred to as “time.” We will use this terminology from time to time also. We refer to (0.1) as a . or . and to (0.2) as a . or .. Both will be terme
9#
發(fā)表于 2025-3-23 03:34:06 | 只看該作者
10#
發(fā)表于 2025-3-23 08:52:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 12:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舒城县| 武夷山市| 辽中县| 太仓市| 夹江县| 秦皇岛市| 吉林市| 高陵县| 措美县| 牡丹江市| 金阳县| 长乐市| 临湘市| 徐闻县| 当涂县| 兰州市| 桂林市| 龙江县| 蕲春县| 永顺县| 平邑县| 微博| 太仓市| 江门市| 游戏| 同江市| 原阳县| 城市| 库伦旗| 锦州市| 垦利县| 枣阳市| 县级市| 高平市| 武陟县| 株洲县| 博白县| 衡阳市| 商城县| 汶上县| 拉萨市|