找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Algebraic Geometry; Igor Kriz,Sophie Kriz Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive l

[復(fù)制鏈接]
查看: 33553|回復(fù): 38
樓主
發(fā)表于 2025-3-21 18:38:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Introduction to Algebraic Geometry
編輯Igor Kriz,Sophie Kriz
視頻videohttp://file.papertrans.cn/474/473392/473392.mp4
概述Explains the motivations behind concepts as they arise, often comparing them to their counterparts in other areas of mathematics.Includes foundational concepts from commutative algebra and details the
圖書封面Titlebook: Introduction to Algebraic Geometry;  Igor Kriz,Sophie Kriz Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive l
描述.The goal of this book is to provide an introduction to algebraic geometry accessible to students. Starting from solutions of polynomial equations, modern tools of the subject soon appear, motivated by how they improve our understanding of geometrical concepts. In many places, analogies and differences with related mathematical areas are explained.?.The text approaches foundations of algebraic geometry in a complete and self-contained way, also covering the underlying algebra. The last two chapters include a comprehensive treatment of cohomology and discuss some of its applications in algebraic geometry..
出版日期Textbook 2021
關(guān)鍵詞algebraic variety; scheme; commutative algebra; crystalline and motivic cohomology; geometry
版次1
doihttps://doi.org/10.1007/978-3-030-62644-0
isbn_softcover978-3-030-62643-3
isbn_ebook978-3-030-62644-0
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Introduction to Algebraic Geometry影響因子(影響力)




書目名稱Introduction to Algebraic Geometry影響因子(影響力)學(xué)科排名




書目名稱Introduction to Algebraic Geometry網(wǎng)絡(luò)公開(kāi)度




書目名稱Introduction to Algebraic Geometry網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Introduction to Algebraic Geometry被引頻次




書目名稱Introduction to Algebraic Geometry被引頻次學(xué)科排名




書目名稱Introduction to Algebraic Geometry年度引用




書目名稱Introduction to Algebraic Geometry年度引用學(xué)科排名




書目名稱Introduction to Algebraic Geometry讀者反饋




書目名稱Introduction to Algebraic Geometry讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:54:45 | 只看該作者
Igor Kriz,Sophie KrizExplains the motivations behind concepts as they arise, often comparing them to their counterparts in other areas of mathematics.Includes foundational concepts from commutative algebra and details the
板凳
發(fā)表于 2025-3-22 02:17:40 | 只看該作者
地板
發(fā)表于 2025-3-22 05:23:48 | 只看該作者
https://doi.org/10.1007/978-3-030-62644-0algebraic variety; scheme; commutative algebra; crystalline and motivic cohomology; geometry
5#
發(fā)表于 2025-3-22 08:59:10 | 只看該作者
6#
發(fā)表于 2025-3-22 14:18:31 | 只看該作者
Properties of Schemes,It is immediately apparent from the definition, and the basic examples we studied, that the concept of a scheme is far more general than the concept of a variety as introduced in Chap. ., just as a topological space is much more general than a subset of .. What are the properties of schemes we should study?
7#
發(fā)表于 2025-3-22 19:39:23 | 只看該作者
8#
發(fā)表于 2025-3-23 00:58:49 | 只看該作者
Sheaves of Modules,spond, for Noetherian schemes, to closed subschemes. A particularly important application of sheaves of ideals is the theory of ., a construction which allows us, for example, to replace a point with a subscheme of codimension 1, while not disturbing (and, in fact, often even improving) smoothness.
9#
發(fā)表于 2025-3-23 03:35:53 | 只看該作者
10#
發(fā)表于 2025-3-23 06:32:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 03:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台南县| 江川县| 迁安市| 昭觉县| 南华县| 西华县| 兴国县| 娱乐| 贵溪市| 太和县| 新余市| 扶余县| 溆浦县| 镇雄县| 牟定县| 班玛县| 大关县| 堆龙德庆县| 台中县| 漳浦县| 洮南市| 望都县| 克东县| 项城市| 黔西县| 左云县| 张家港市| 酉阳| 云林县| 米林县| 麦盖提县| 定兴县| 巴里| 洱源县| 澄城县| 六盘水市| 盈江县| 麻城市| 梧州市| 泗水县| 江西省|